Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Adapter is All You Need for Tuning Visual Tasks (2311.15010v2)

Published 25 Nov 2023 in cs.CV

Abstract: Pre-training & fine-tuning can enhance the transferring efficiency and performance in visual tasks. Recent delta-tuning methods provide more options for visual classification tasks. Despite their success, existing visual delta-tuning art fails to exceed the upper limit of full fine-tuning on challenging tasks like instance segmentation and semantic segmentation. To find a competitive alternative to full fine-tuning, we propose the Multi-cognitive Visual Adapter (Mona) tuning, a novel adapter-based tuning method. First, we introduce multiple vision-friendly filters into the adapter to enhance its ability to process visual signals, while previous methods mainly rely on language-friendly linear filters. Second, we add the scaled normalization layer in the adapter to regulate the distribution of input features for visual filters. To fully demonstrate the practicality and generality of Mona, we conduct experiments on multiple representative visual tasks, including instance segmentation on COCO, semantic segmentation on ADE20K, object detection on Pascal VOC, and image classification on several common datasets. Exciting results illustrate that Mona surpasses full fine-tuning on all these tasks and is the only delta-tuning method outperforming full fine-tuning on instance segmentation and semantic segmentation tasks. For example, Mona achieves a 1% performance gain on the COCO dataset compared to full fine-tuning. Comprehensive results suggest that Mona-tuning is more suitable for retaining and utilizing the capabilities of pre-trained models than full fine-tuning. The code will be released at https://github.com/Leiyi-Hu/mona.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com