Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Queue Management with Data-Driven Delay Violation Probability Predictors (2311.14982v1)

Published 25 Nov 2023 in cs.NI

Abstract: The increasing demand for latency-sensitive applications has necessitated the development of sophisticated algorithms that efficiently manage packets with end-to-end delay targets traversing the networked infrastructure. Network components must consider minimizing the packets' end-to-end delay violation probabilities (DVP) as a guiding principle throughout the transmission path to ensure timely deliveries. Active queue management (AQM) schemes are commonly used to mitigate congestion by dropping packets and controlling queuing delay. Today's established AQM schemes are threshold-driven, identifying congestion and trigger packet dropping using a predefined criteria which is unaware of packets' DVPs. In this work, we propose a novel framework, Delta, that combines end-to-end delay characterization with AQM for minimizing DVP. In a queuing theoretic environment, we show that such a policy is feasible by utilizing a data-driven approach to predict the queued packets' DVPs. That enables Delta AQM to effectively handle links with arbitrary stationary service time processes. The implementation is described in detail, and its performance is evaluated and compared with state of the art AQM algorithms. Our results show the Delta outperforms current AQM schemes substantially, in particular in scenarios where high reliability, i.e. high quantiles of the tail latency distribution, are of interest.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pp. 363–369, 2008.
  2. C.-S. Chang, Performance guarantees in communication networks. Springer Science & Business Media, 2000.
  3. G. P. Sharma, D. Patel, J. Sachs, M. D. Andrade, J. Farkas, J. Harmatos, B. Varga, H.-P. Bernhard, R. Muzaffar, M. K. Atiq, F. Duerr, D. Bruckner, E. Montesdeoca, D. Houatra, H. Zhang, and J. Gross, “Towards deterministic communications in 6g networks: State of the art, open challenges and the way forward,” 2023.
  4. P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture,” IEEE Communications Magazine, vol. 55, no. 2, pp. 70–78, 2017.
  5. Springer, 2008.
  6. M. Fidler and A. Rizk, “A guide to the stochastic network calculus,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 92–105, 2014.
  7. J. P. Champati, H. Al-Zubaidy, and J. Gross, “Transient analysis for multihop wireless networks under static routing,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 722–735, 2020.
  8. A. Sawabe, Y. Shinohara, and T. Iwai, “Delay Jitter Modeling for Low-Latency Wireless Communications in Mobility Scenarios,” in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pp. 2638–2643, Dec. 2022.
  9. S. S. Mostafavi, G. Dán, and J. Gross, “Data-driven end-to-end delay violation probability prediction with extreme value mixture models,” in 2021 IEEE/ACM Symposium on Edge Computing (SEC), pp. 416–422, 2021.
  10. R. Adams, “Active queue management: A survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1425–1476, 2013.
  11. R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian, F. Baker, and B. VerSteeg, “Pie: A lightweight control scheme to address the bufferbloat problem,” in 2013 IEEE 14th International Conference on High Performance Switching and Routing (HPSR), pp. 148–155, 2013.
  12. K. Nichols and V. Jacobson, “Controlling queue delay,” Commun. ACM, vol. 55, p. 42–50, jul 2012.
  13. M. Kim, M. Jaseemuddin, and A. Anpalagan, “Deep Reinforcement Learning Based Active Queue Management for IoT Networks,” Journal of Network and Systems Management, vol. 29, p. 34, Apr. 2021.
  14. J. Liu, J. Huang, W. Jiang, Z. Li, Y. Li, W. Lyu, W. Jiang, J. Zhang, and J. Wang, “End-to-end congestion control to provide deterministic latency over internet,” IEEE Communications Letters, vol. 26, no. 4, pp. 843–847, 2022.
  15. S. Kar, B. Alt, H. Koeppl, and A. Rizk, “PAQMAN: A Principled Approach to Active Queue Management,” 2022. Publisher: arXiv Version Number: 1.

Summary

We haven't generated a summary for this paper yet.