Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DESiRED -- Dynamic, Enhanced, and Smart iRED: A P4-AQM with Deep Reinforcement Learning and In-band Network Telemetry (2310.18159v1)

Published 27 Oct 2023 in cs.NI

Abstract: Active Queue Management (AQM) is a mechanism employed to alleviate transient congestion in network device buffers, such as routers and switches. Traditional AQM algorithms use fixed thresholds, like target delay or queue occupancy, to compute random packet drop probabilities. A very small target delay can increase packet losses and reduce link utilization, while a large target delay may increase queueing delays while lowering drop probability. Due to dynamic network traffic characteristics, where traffic fluctuations can lead to significant queue variations, maintaining a fixed threshold AQM may not suit all applications. Consequently, we explore the question: \textit{What is the ideal threshold (target delay) for AQMs?} In this work, we introduce DESiRED (Dynamic, Enhanced, and Smart iRED), a P4-based AQM that leverages precise network feedback from In-band Network Telemetry (INT) to feed a Deep Reinforcement Learning (DRL) model. This model dynamically adjusts the target delay based on rewards that maximize application Quality of Service (QoS). We evaluate DESiRED in a realistic P4-based test environment running an MPEG-DASH service. Our findings demonstrate up to a 90x reduction in video stall and a 42x increase in high-resolution video playback quality when the target delay is adjusted dynamically by DESiRED.

Citations (1)

Summary

We haven't generated a summary for this paper yet.