Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Critical temperature and thermodynamic properties of a homogeneous dilute weakly interacting Bose gas within the improved Hartree-Fock approximation at finite temperature (2311.13822v2)

Published 23 Nov 2023 in cond-mat.quant-gas, cond-mat.stat-mech, and quant-ph

Abstract: By means of Cornwall-Jackiw-Tomboulis effective action approach we investigate a homogeneous dilute weakly interacting Bose gas at finite temperature in vicinity of critical region. A longstanding debate, the shift of critical temperature, is considered and obtained in the universal form $\Delta T_C/T_C{(0)} = cn_0{1/3}a_s$ with constants $c$ and $a$. The non-condensate fraction is contributed by quantum fluctuations as well as thermal exitations and can be expressed in sum of three terms. These terms correspond to the quantum fluctuations, thermal fluctuations and both. Indeed, the specific heat capacity and critical exponents are calculated and in excellent agreement with those in previous works and experimental data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. S. N. Bose, Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26, 178–181 (1924).
  2. A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitz. Ber. Preuss. Akad. Wiss. 22, 261 (1924).
  3. C. J. Pethick and H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd ed. (Cambridge University Press, 2008).
  4. K. Huang, Statistical Mechanics (Wiley, New York, 1987).
  5. E. H. Lieb and W. Liniger, Exact analysis of an interacting bose gas. i. the general solution and the ground state, Physical Review 130, 1605 (1963).
  6. E. H. Lieb, Exact analysis of an interacting bose gas. ii. the excitation spectrum, Physical Review 130, 1616 (1963).
  7. J. O. Andersen, Theory of the weakly interacting Bose gas, Rev. Mod. Phys. 76, 599 (2004).
  8. T. Toyoda, A microscopic theory of the lambda transition, Annals of Physics 141, 154 (1982).
  9. S. Ledowski, N. Hasselmann, and P. Kopietz, Self-energy and critical temperature of weakly interacting bosons, Physical Review A 69, 061601 (2004).
  10. M. J. Davis and S. A. Morgan, Microcanonical temperature for a classical field: Application to bose-einstein condensation, Physical Review A 68, 053615 (2003).
  11. P. Arnold and G. Moore, Bec transition temperature of a dilute homogeneous imperfect bose gas, Physical Review Letters 87, 120401 (2001).
  12. G. Baym, J.-P. Blaizot, and J. Zinn-Justin, The transition temperature of the dilute interacting bose gas for n internal states, Europhysics Letters (EPL) 49, 150 (2000).
  13. F. F. de Souza Cruz, M. B. Pinto, and R. O. Ramos, Transition temperature for weakly interacting homogeneous bose gases, Physical Review B 64, 014515 (2001).
  14. H. T. C. Stoof, Nucleation of bose-einstein condensation, Physical Review A 45, 8398 (1992).
  15. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Oxford University Press, 2003).
  16. H. Shi and A. Griffin, Finite-temperature excitations in a dilute bose-condensed gas, Physics Reports 304, 1 (1998).
  17. E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cim. 20, 454–477 (1961).
  18. L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13, 451 (1961).
  19. N. N. Bogolyubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947).
  20. S. Stringari, Quantum fluctuations and Gross-Pitaevskii theory, J. Expr. Theor. Phys. 127, 844 (2018).
  21. J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective Action for Composite Operators, Phys. Rev. D 10, 2428 (1974).
  22. N. Van Thu and J. Berx, The condensed fraction of a homogeneous dilute bose gas within the improved hartree–fock approximation, Journal of Statistical Physics 188, 10.1007/s10955-022-02944-0 (2022).
  23. N. V. Thu, Non-condensate fraction of a weakly interacting bose gas confined between two parallel plates within improved hartree-fock approximation at zero temperature, Physics Letters A 486, 129099 (2023).
  24. N. V. Thu and P. T. Song, Casimir effect in a weakly interacting Bose gas confined by a parallel plate geometry in improved Hartree–Fock approximation, Physica A 540, 123018 (2020).
  25. N. Van Thu and L. T. Theu, Casimir force of two-component bose–einstein condensates confined by a parallel plate geometry, Journal of Statistical Physics 168, 1 (2017).
  26. N. Van Thu, The casimir effect in bose–einstein condensate mixtures confined by a parallel plate geometry in the improved hartree–fock approximation, Journal of Experimental and Theoretical Physics 135, 147 (2022).
  27. N. Van Thu, The casimir effect in a dilute bose gas in canonical ensemble within improved hartree–fock approximation, Journal of Low Temperature Physics 204, 12 (2021).
  28. T. Haugset, H. Haugerud, and F. Ravndal, Thermodynamics of a weakly interacting bose–einstein gas, Annals of Physics 266, 27 (1998).
  29. J. W. N. H. Orland, Quantum Many-Particle Systems, edited by D. Pines (Westview Press, 1998).
  30. J. Goldstone, Field Theories with Superconductor Solutions, Nuovo Cim. 19, 154 (1961).
  31. P. W. Anderson, Basic Notions of Condensed Matter Physics, edited by P. W. Anderson (CRC Press, 2018).
  32. N. M. Hugenholtz and D. Pines, Ground-state energy and excitation spectrum of a system of interacting bosons, Phys. Rev. 116, 489 (1959).
  33. P. Hohenberg and P. Martin, Microscopic theory of superfluid helium, Annals of Physics 34, 291 (1965).
  34. D. A. W. Hutchinson, R. J. Dodd, and K. Burnett, Gapless finite- T𝑇\mathit{T}italic_T theory of collective modes of a trapped gas, Phys. Rev. Lett. 81, 2198 (1998).
  35. A. Griffin, Conserving and gapless approximations for an inhomogeneous bose gas at finite temperatures, Phys. Rev. B 53, 9341 (1996).
  36. Y. B. Ivanov, F. Riek, and J. Knoll, Gapless Hartree-Fock resummation scheme for the O⁢(N)𝑂𝑁O(N)italic_O ( italic_N ) model, Phys. Rev. D 71, 105016 (2005).
  37. A. Schmitt, Dense matter in compact stars (Springer-Verlag Berlin Heidelberg, 2010).
  38. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980).
  39. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle System (McGraw-Hill, New York, 1971).
  40. P. Grüter, D. Ceperley, and F. Laloë, Critical temperature of bose-einstein condensation of hard-sphere gases, Physical Review Letters 79, 3549 (1997).
  41. M. Holzmann, P. Grüter, and F. Laloë, Bose-einstein condensation in interacting gases, The European Physical Journal B 10, 739 (1999).
  42. R. F. B. C. W. C. F. W. J. Olver, D. W. Lozier, NIST Handbook of Mathematical Functions (Cambridge University Press, 2010).
  43. S.-H. Kim, Discontinuity in the specific heat of a weakly interacting bose gas (arxiv:0707.3320) (2007).
  44. M. E. Fisher, The theory of equilibrium critical phenomena, Reports on Progress in Physics 30, 615 (1967).
  45. I. Reyes-Ayala, F. J. Poveda-Cuevas, and V. Romero-Rochín, Non-classical critical exponents at bose–einstein condensation, Journal of Statistical Mechanics: Theory and Experiment 2019, 113102 (2019).
  46. S.-K. Ma, Modern Theory Of Critical Phenomena (Singapore: World Scientific, 1985).
  47. S. Giorgini, J. Boronat, and J. Casulleras, Ground state of a homogeneous bose gas: A diffusion monte carlo calculation, Phys. Rev. A 60, 5129 (1999).
  48. B. Widom, Equation of state in the neighborhood of the critical point, The Journal of Chemical Physics 43, 3898 (1965).
  49. K. Wilson, The renormalization group and the ε𝜀\varepsilonitalic_ε expansion, Physics Reports 12, 75 (1974).
  50. A. E. Glassgold, A. N. Kaufman, and K. M. Watson, Statistical mechanics for the nonideal bose gas, Physical Review 120, 660 (1960).
  51. H. D. Politzer, Condensate fluctuations of a trapped, ideal bose gas, Physical Review A 54, 5048 (1996).
  52. H. Shi, W.-M. Zheng, and S.-T. Chui, Phase separation of bose gases at finite temperature, Physical Review A 61, 063613 (2000).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com