Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lee-Yang and Langer edge singularities from analytic continuation of scaling functions (2311.13530v2)

Published 22 Nov 2023 in hep-lat, cond-mat.stat-mech, and hep-ph

Abstract: We discuss the analytic continuation of scaling function in the 3-dimensional Z(2),O(2) andO(4) universality classes using the Schofield representation of the magnetic equation of state. We show that a determination of the location of Lee-Yang edge singularities and, in the case of Z(2), also the Langer edge singularity yields stable results. Results for the former are in good agreement with Functional Renormalization Group calculations. We also present results for the location of the Langer edge singularity in the 3-d,Z(2) universality class. We find that in terms of the complex scaling variable z the distance of the Langer edge singularity to the critical point agrees within errors with that of the Lee-Yang edge singularity. Furthermore the magnitude of the discontinuity along the Langer branch cut is an order of magnitude smaller than that along the Lee-Yang branch cut.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. F. Gross et al., 50 Years of Quantum Chromodynamics,   (2022), arXiv:2212.11107 [hep-ph] .
  2. O. Philipsen, Lattice Constraints on the QCD Chiral Phase Transition at Finite Temperature and Baryon Density, Symmetry 13, 2079 (2021), arXiv:2111.03590 [hep-lat] .
  3. J. N. Guenther, An overview of the QCD phase diagram at finite T𝑇Titalic_T and μ𝜇\muitalic_μ, PoS LATTICE2021, 013 (2022), arXiv:2201.02072 [hep-lat] .
  4. M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys. Rev. D 67, 014505 (2003), arXiv:hep-lat/0209146 .
  5. P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary chemical potential, Nucl. Phys. B 642, 290 (2002), arXiv:hep-lat/0205016 .
  6. R. V. Gavai and S. Gupta, Quark number susceptibilities, strangeness and dynamical confinement, Phys. Rev. D 64, 074506 (2001), arXiv:hep-lat/0103013 .
  7. C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation, Phys. Rev. 87, 404 (1952).
  8. T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model, Phys. Rev. 87, 410 (1952).
  9. X. An, D. Mesterházy, and M. A. Stephanov, Functional renormalization group approach to the Yang-Lee edge singularity, JHEP 07, 041, arXiv:1605.06039 [hep-th] .
  10. X. An, D. Mesterházy, and M. A. Stephanov, On spinodal points and Lee-Yang edge singularities, J. Stat. Mech. 1803, 033207 (2018), arXiv:1707.06447 [hep-th] .
  11. S. Mukherjee and V. Skokov, Universality driven analytic structure of the QCD crossover: radius of convergence in the baryon chemical potential, Phys. Rev. D 103, L071501 (2021), arXiv:1909.04639 [hep-ph] .
  12. S. Mukherjee, F. Rennecke, and V. V. Skokov, Analytical structure of the equation of state at finite density: Resummation versus expansion in a low energy model, Phys. Rev. D 105, 014026 (2022), arXiv:2110.02241 [hep-ph] .
  13. G. Basar, G. V. Dunne, and Z. Yin, Uniformizing Lee-Yang singularities, Phys. Rev. D 105, 105002 (2022), arXiv:2112.14269 [hep-th] .
  14. J. S. Langer, Theory of the condensation point, Annals Phys. 41, 108 (1967).
  15. G. Johnson, F. Rennecke, and V. V. Skokov, Universal location of Yang-Lee edge singularity in classic O(N) universality classes, Phys. Rev. D 107, 116013 (2023), arXiv:2211.00710 [hep-ph] .
  16. P. Schofield, Parametric representation of the equation of state near a critical point, Phys. Rev. Lett. 22, 606 (1969).
  17. P. Schofield, J. D. Litster, and J. T. Ho, Correlation between critical coefficients and critical exponents, Phys. Rev. Lett. 23, 1098 (1969).
  18. B. Widom, Equation of State in the Neighborhood of the Critical Point, J. Chem. Phys. 43, 3898 (1965).
  19. R. B. Griffiths, Thermodynamic functions for fluids and ferromagnets near the critical point, Phys. Rev. 158, 176 (1967).
  20. J. Engels and T. Mendes, Goldstone mode effects and scaling function for the three-dimensional O(4) model, Nucl. Phys. B 572, 289 (2000), arXiv:hep-lat/9911028 .
  21. M. E. Fisher, Yang-lee edge singularity and ϕ3superscriptitalic-ϕ3{\phi}^{3}italic_ϕ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT field theory, Phys. Rev. Lett. 40, 1610 (1978).
  22. P. Fonseca and A. Zamolodchikov, Ising field theory in a magnetic field: Analytic properties of the free energy,   (2001), arXiv:hep-th/0112167 .
  23. M. Hasenbusch, A Monte Carlo study of leading order scaling corrections of ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theory on a three-dimensional lattice, J. Phys. A 32, 4851 (1999), arXiv:hep-lat/9902026 .
  24. J. Engels, L. Fromme, and M. Seniuch, Numerical equation of state from an improved three-dimensional Ising model, Nucl. Phys. B 655, 277 (2003a), arXiv:cond-mat/0209492 .
  25. R. Guida and J. Zinn-Justin, 3-D Ising model: The Scaling equation of state, Nucl. Phys. B 489, 626 (1997), arXiv:hep-th/9610223 .
  26. R. Guida and J. Zinn-Justin, Critical exponents of the N vector model, J. Phys. A 31, 8103 (1998), arXiv:cond-mat/9803240 .
  27. J. Engels and F. Karsch, The scaling functions of the free energy density and its derivatives for the 3d O(4) model, Phys. Rev. D 85, 094506 (2012), arXiv:1105.0584 [hep-lat] .
  28. D. S. Gaunt and C. Domb, Equation of state of the ising model near the critical point, Journal of Physics C: Solid State Physics 3, 1442 (1970).
  29. E. Brézin, D. J. Wallace, and K. G. Wilson, Feynman-graph expansion for the equation of state near the critical point (ising-like case), Phys. Rev. Lett. 29, 591 (1972).
  30. D. J. Wallace and R. K. P. Zia, Parametric models and the Ising equation of state at order epsilon**3, J. Phys. A 7, 3480 (1974).
  31. M. Hasenbusch, Finite size scaling study of lattice models in the three-dimensional Ising universality class, Phys. Rev. B 82, 174433 (2010), arXiv:1004.4486 [cond-mat.stat-mech] .
  32. M. Hasenbusch, Monte Carlo study of an improved clock model in three dimensions, Phys. Rev. B 100, 224517 (2019), arXiv:1910.05916 [cond-mat.stat-mech] .
  33. J. Engels, L. Fromme, and M. Seniuch, Correlation lengths and scaling functions in the three-dimensional O(4) model, Nucl. Phys. B 675, 533 (2003b), arXiv:hep-lat/0307032 .
  34. J. Zinn-Justin, Precise determination of critical exponents and equation of state by field theory methods, Phys. Rept. 344, 159 (2001), arXiv:hep-th/0002136 .
  35. F. Karsch, C. Schmidt, and S. Singh, Dataset for ”lee-yang and langer edge singularities from analytic continuation of scaling functions”, Bielefeld University 10.4119/unibi/2985954 (2024).
Citations (7)

Summary

We haven't generated a summary for this paper yet.