2000 character limit reached
Universal location of Yang-Lee edge singularity in classic O(N) universality classes (2211.00710v2)
Published 1 Nov 2022 in hep-ph and cond-mat.stat-mech
Abstract: Employing the functional renormalization group approach at next-to-leading order of the derivative expansion, we refine our earlier findings for the location of the Yang-Lee edge singularity in classic O(N) universality classes. For the universality classes of interest to QCD, in three dimensions, we found $|z_c|/R_\chi{1/\gamma} = 1.612(9),\ 1.597(3)$ for $N=2$, $4$ correspondingly. We also established $|z_c| = 2.04(8),\ 1.69(3)$ for $N=2$, $4$ albeit with greater systematic error.
- J. Engels, L. Fromme, and M. Seniuch, Numerical equation of state from an improved three-dimensional Ising model, Nucl. Phys. B 655, 277 (2003), arXiv:cond-mat/0209492 .
- M. Hasenbusch, A Monte Carlo study of the three-dimensional XY universality class: universal amplitude ratios, J. Stat. Mech. 0812, P12006 (2008), arXiv:0810.2716 [cond-mat.stat-mech] .
- F. Kos, D. Poland, and D. Simmons-Duffin, Bootstrapping the O(N)𝑂𝑁O(N)italic_O ( italic_N ) vector models, JHEP 06, 091, arXiv:1307.6856 [hep-th] .
- M. Hasenbusch, Three-dimensional O(N)𝑂𝑁O(N)italic_O ( italic_N )-invariant ϕ4superscriptitalic-ϕ4\phi^{4}italic_ϕ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models at criticality for N≥4𝑁4N\geq 4italic_N ≥ 4, Phys. Rev. B 105, 054428 (2022), arXiv:2112.03783 [hep-lat] .
- F. Rennecke and V. V. Skokov, Universal location of Yang-Lee edge singularity for a one-component field theory, Annals Phys. 444, 169010 (2022), arXiv:2203.16651 [hep-ph] .
- C. N. Yang and T. D. Lee, Statistical theory of equations of state and phase transitions. i. theory of condensation, Phys. Rev. 87, 404 (1952).
- T. D. Lee and C. N. Yang, Statistical theory of equations of state and phase transitions. ii. lattice gas and ising model, Phys. Rev. 87, 410 (1952).
- F. Gliozzi and A. Rago, Critical exponents of the 3d Ising and related models from Conformal Bootstrap, JHEP 10, 042, arXiv:1403.6003 [hep-th] .
- X. An, D. Mesterházy, and M. A. Stephanov, Functional renormalization group approach to the Yang-Lee edge singularity, JHEP 07, 041, arXiv:1605.06039 [hep-th] .
- L. Zambelli and O. Zanusso, Lee-Yang model from the functional renormalization group, Phys. Rev. D 95, 085001 (2017), arXiv:1612.08739 [hep-th] .
- M. E. Fisher, Yang-Lee Edge Singularity and phi**3 Field Theory, Phys. Rev. Lett. 40, 1610 (1978).
- J. Berges, N. Tetradis, and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363, 223 (2002), arXiv:hep-ph/0005122 .
- P. M. Stevenson, Optimized Perturbation Theory, Phys. Rev. D 23, 2916 (1981).
- B. Widom, Equation of state in the neighborhood of the critical point, The Journal of Chemical Physics 43, 3898 (1965), https://doi.org/10.1063/1.1696618 .
- G. De Polsi, G. Hernández-Chifflet, and N. Wschebor, Precision calculation of universal amplitude ratios in O(N) universality classes: Derivative expansion results at order O(∂4superscript4\partial^{4}∂ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT), Phys. Rev. E 104, 064101 (2021), arXiv:2109.14731 [cond-mat.stat-mech] .
- M. Moshe and J. Zinn-Justin, Quantum field theory in the large N limit: A Review, Phys. Rept. 385, 69 (2003), arXiv:hep-th/0306133 .
- H. T. Ding et al. (HotQCD), Chiral Phase Transition Temperature in ( 2+1 )-Flavor QCD, Phys. Rev. Lett. 123, 062002 (2019), arXiv:1903.04801 [hep-lat] .
- R. Abe and M. Masutani, Note on Epsilon Expansion for Critical Amplitude Ratio r (Chi), Prog. Theor. Phys. 59, 672 (1978).
- G. M. Avdeeva and A. A. Migdal, Equation of State in (4 - epsilon) - Dimensional Ising Model, Soviet Journal of Experimental and Theoretical Physics Letters 16, 178 (1972).
- P. Fonseca and A. Zamolodchikov, Ising field theory in a magnetic field: Analytic properties of the free energy, (2001), arXiv:hep-th/0112167 .
- H.-L. Xu and A. Zamolodchikov, 2D Ising Field Theory in a magnetic field: the Yang-Lee singularity, JHEP 08, 057, arXiv:2203.11262 [hep-th] .
- B. Nienhuis, Exact critical point and critical exponents of O(n)O𝑛\mathrm{O}(n)roman_O ( italic_n ) models in two dimensions, Phys. Rev. Lett. 49, 1062 (1982).
- V. L. Berezinskiǐ, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems, Soviet Journal of Experimental and Theoretical Physics 32, 493 (1971).
- V. L. Berezinskiǐ, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems Possessing a Continuous Symmetry Group. II. Quantum Systems, Soviet Journal of Experimental and Theoretical Physics 34, 610 (1972).
- J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics 6, 1181 (1973).
- E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ𝜎\sigmaitalic_σ model in 2+ϵ2italic-ϵ2+\epsilon2 + italic_ϵ dimensions—application to the heisenberg ferromagnets, Phys. Rev. Lett. 36, 691 (1976).
- J. L. Cardy and H. W. Hamber, o(n)𝑜𝑛o(n)italic_o ( italic_n ) heisenberg model close to n=d=2𝑛𝑑2n=d=2italic_n = italic_d = 2, Phys. Rev. Lett. 45, 499 (1980).
- S. Q. Yang and D. Belitz, Equations of state for nonlinear sigma-models. 2: Relations between resummation schemes, and crossover phenomena, Nucl. Phys. B 441, 549 (1995), arXiv:cond-mat/9412105 .
- A. Codello, N. Defenu, and G. D’Odorico, Critical exponents of O(N) models in fractional dimensions, Phys. Rev. D 91, 105003 (2015), arXiv:1410.3308 [hep-th] .
- A. Codello and G. D’Odorico, o(n)𝑜𝑛o(n)italic_o ( italic_n )-universality classes and the mermin-wagner theorem, Phys. Rev. Lett. 110, 141601 (2013).
- A. Chlebicki and P. Jakubczyk, Analyticity of critical exponents of the O(N)𝑂𝑁O(N)italic_O ( italic_N ) models from nonperturbative renormalization, SciPost Phys. 10, 134 (2021).
- R. Balian and G. Toulouse, Critical exponents for transitions with n=−2𝑛2n=-2italic_n = - 2 components of the order parameter, Phys. Rev. Lett. 30, 544 (1973).
- M. E. Fisher, Classical, n-Component Spin Systems or Fields with Negative Even Integral n, Phys. Rev. Lett. 30, 679 (1973).
- C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90 (1993), arXiv:1710.05815 [hep-th] .
- B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative renormalization group approach to frustrated magnets, Phys. Rev. B 69, 134413 (2004), arXiv:cond-mat/0309101 .
- J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys. G 39, 033001 (2012), arXiv:1108.4449 [hep-ph] .
- P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the functional renormalization group, Vol. 798 (2010).
- T. R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9, 2411 (1994a), arXiv:hep-ph/9308265 .
- U. Ellwanger, FLow equations for N point functions and bound states, Z. Phys. C 62, 503 (1994), arXiv:hep-ph/9308260 .
- J. Berges, N. Tetradis, and C. Wetterich, Critical equation of state from the average action, Phys. Rev. Lett. 77, 873 (1996), arXiv:hep-th/9507159 .
- O. Bohr, B. J. Schaefer, and J. Wambach, Renormalization group flow equations and the phase transition in O(N) models, Int. J. Mod. Phys. A 16, 3823 (2001), arXiv:hep-ph/0007098 .
- D. F. Litim, Derivative expansion and renormalization group flows, JHEP 11, 059, arXiv:hep-th/0111159 .
- C. Bervillier, A. Juttner, and D. F. Litim, High-accuracy scaling exponents in the local potential approximation, Nucl. Phys. B 783, 213 (2007), arXiv:hep-th/0701172 .
- J. Braun and B. Klein, Scaling functions for the O(4)-model in d=3 dimensions, Phys. Rev. D 77, 096008 (2008), arXiv:0712.3574 [hep-th] .
- J. Braun and B. Klein, Finite-Size Scaling behavior in the O(4)-Model, Eur. Phys. J. C 63, 443 (2009), arXiv:0810.0857 [hep-ph] .
- B. Stokic, B. Friman, and K. Redlich, The Functional Renormalization Group and O(4) scaling, Eur. Phys. J. C 67, 425 (2010), arXiv:0904.0466 [hep-ph] .
- D. F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83, 085009 (2011), arXiv:1009.1948 [hep-th] .
- N. Defenu, A. Trombettoni, and A. Codello, Fixed-point structure and effective fractional dimensionality for O(N)𝑁(N)( italic_N ) models with long-range interactions, Phys. Rev. E 92, 052113 (2015), arXiv:1409.8322 [cond-mat.stat-mech] .
- A. Eichhorn, L. Janssen, and M. M. Scherer, Critical O(N) models above four dimensions: Small-N solutions and stability, Phys. Rev. D 93, 125021 (2016), arXiv:1604.03561 [hep-th] .
- D. F. Litim and E. Marchais, Critical O(N)𝑂𝑁O(N)italic_O ( italic_N ) models in the complex field plane, Phys. Rev. D 95, 025026 (2017), arXiv:1607.02030 [hep-th] .
- A. Jüttner, D. F. Litim, and E. Marchais, Global Wilson–Fisher fixed points, Nucl. Phys. B 921, 769 (2017), arXiv:1701.05168 [hep-th] .
- D. Roscher and I. F. Herbut, Critical O(2)𝑂2O(2)italic_O ( 2 ) field theory near six dimensions beyond one loop, Phys. Rev. D 97, 116019 (2018), arXiv:1805.01480 [hep-th] .
- S. Yabunaka and B. Delamotte, Why Might the Standard Large N𝑁Nitalic_N Analysis Fail in the O(N𝑁Nitalic_N) Model: The Role of Cusps in the Fixed Point Potentials, Phys. Rev. Lett. 121, 231601 (2018), arXiv:1807.04681 [cond-mat.stat-mech] .
- N. Tetradis and D. F. Litim, Analytical solutions of exact renormalization group equations, Nucl. Phys. B 464, 492 (1996), arXiv:hep-th/9512073 .
- T. R. Morris, Derivative expansion of the exact renormalization group, Phys. Lett. B 329, 241 (1994b), arXiv:hep-ph/9403340 .
- D. F. Litim, Optimized renormalization group flows, Phys. Rev. D 64, 105007 (2001b), arXiv:hep-th/0103195 .
- D. F. Litim, J. M. Pawlowski, and L. Vergara, Convexity of the effective action from functional flows, (2006), arXiv:hep-th/0602140 .
- J. M. Pawlowski and F. Rennecke, Higher order quark-mesonic scattering processes and the phase structure of QCD, Phys. Rev. D 90, 076002 (2014), arXiv:1403.1179 [hep-ph] .
- S. Seide and C. Wetterich, Equation of state near the endpoint of the critical line, Nucl. Phys. B 562, 524 (1999), arXiv:cond-mat/9806372 .
- S. Mukherjee and V. Skokov, Universality driven analytic structure of the QCD crossover: radius of convergence in the baryon chemical potential, Phys. Rev. D 103, L071501 (2021), arXiv:1909.04639 [hep-ph] .
- S. Mukherjee, F. Rennecke, and V. V. Skokov, Analytical structure of the equation of state at finite density: Resummation versus expansion in a low energy model, Phys. Rev. D 105, 014026 (2022), arXiv:2110.02241 [hep-ph] .
- G. Basar, G. Dunne, and Z. Yin, Uniformizing Lee-Yang Singularities, (2021), arXiv:2112.14269 [hep-th] .
- R. Guida and J. Zinn-Justin, 3-D Ising model: The Scaling equation of state, Nucl. Phys. B 489, 626 (1997), arXiv:hep-th/9610223 .