Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

State Diagrams to determine Tree Tensor Network Operators (2311.13433v4)

Published 22 Nov 2023 in quant-ph and cond-mat.str-el

Abstract: This work is concerned with tree tensor network operators (TTNOs) for representing quantum Hamiltonians. We first establish a mathematical framework connecting tree topologies with state diagrams. Based on these, we devise an algorithm for constructing a TTNO given a Hamiltonian. The algorithm exploits the tensor product structure of the Hamiltonian to add paths to a state diagram, while combining local operators if possible. We test the capabilities of our algorithm on random Hamiltonians for a given tree structure. Additionally, we construct explicit TTNOs for nearest neighbour interactions on a tree topology. Furthermore, we derive a bound on the bond dimension of tensor operators representing arbitrary interactions on trees. Finally, we consider an open quantum system in the form of a Heisenberg spin chain coupled to bosonic bath sites as a concrete example. We find that tree structures allow for lower bond dimensions of the Hamiltonian tensor network representation compared to a matrix product operator structure. This reduction is large enough to reduce the number of total tensor elements required as soon as the number of baths per spin reaches $3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Fork tensor-product states: Efficient multiorbital real-time DMFT solver, Phys. Rev. X 7(3), 031013 (2017), 10.1103/PhysRevX.7.031013.
  2. K. Okunishi, H. Ueda and T. Nishino, Entanglement bipartitioning and tree tensor networks, arXiv:2210.11741 (2023), 2210.11741.
  3. Simulating strongly correlated quantum systems with tree tensor networks, Phys. Rev. B 82(20), 205105 (2010), 10.1103/PhysRevB.82.205105.
  4. N. Nakatani and G. K.-L. Chan, Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm, The J. Chem. Phys. 138(13), 134113 (2013), 10.1063/1.4798639.
  5. H. R. Larsson, Computing vibrational eigenstates with tree tensor network states (TTNS), J. Chem. Phys. 151(20), 204102 (2019), 10.1063/1.5130390.
  6. T3NS: Three-legged tree tensor network states, J. Chem. Theory Comput. 14(4), 2026–2033 (2018), 10.1021/acs.jctc.8b00098.
  7. Tree tensor network state with variable tensor order: An efficient multireference method for strongly correlated systems, J. Chem. Theory Comput. 11(3), 1027 (2015), 10.1021/ct501187j.
  8. L. Tagliacozzo, G. Evenbly and G. Vidal, Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law, Phys. Rev. B 80(23), 235127 (2009), 10.1103/PhysRevB.80.235127.
  9. Homogeneous binary trees as ground states of quantum critical Hamiltonians, Phys. Rev. A 81(6), 062335 (2010), 10.1103/PhysRevA.81.062335.
  10. Efficient tensor network simulation of IBM’s kicked Ising experiment, arXiv:2306.14887 (arXiv:2306.14887) (2023), 2306.14887.
  11. I. P. McCulloch, From density-matrix renormalization group to matrix product states, J. Stat. Mech.: Theor. Exp. 2007(10) (2007), 10.1088/1742-5468/2007/10/P10014.
  12. F. Fröwis, V. Nebendahl and W. Dür, Tensor operators: Constructions and applications for long-range interaction systems, Phys. Rev. A 81, 062337 (2010), 10.1103/PhysRevA.81.062337.
  13. An efficient matrix product operator representation of the quantum chemical Hamiltonian, J. Chem. Phys. 143(24) (2015), 10.1063/1.4939000.
  14. A general automatic method for optimal construction of matrix product operators using bipartite graph theory, J. Chem. Phys. 153, 084118 (2020), 10.1063/5.0018149.
  15. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms, J. Chem. Phys. 145(1) (2016), 10.1063/1.4955108.
  16. G. M. Crosswhite, A. C. Doherty and G. Vidal, Applying matrix product operators to model systems with long-range interactions, Phys. Rev. B 78, 035116 (2008), 10.1103/PhysRevB.78.035116.
  17. G. M. Crosswhite and D. Bacon, Finite automata for caching in matrix product algorithms, Phys. Rev. A 78, 012356 (2008), 10.1103/PhysRevA.78.012356.
  18. U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Physics 326, 96 (2011), https://doi.org/10.1016/j.aop.2010.09.012.
  19. Unifying time evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016), 10.1103/PhysRevB.94.165116.
  20. Time-evolving a matrix product state with long-ranged interactions, Phys. Rev. B 91, 165112 (2015), 10.1103/PhysRevB.91.165112.
  21. F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004), 10.1103/PhysRevLett.93.207204.
  22. One-dimensional many-body entangled open quantum systems with tensor network methods, Quantum Sci. Technol. 4(1), 013001 (2018), 10.1088/2058-9565/aae724.
  23. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators, Nat. Commun. 9, 3322 (2018), 10.1038/s41467-018-05617-3.
  24. D. Bauernfeind and M. Aichhorn, Time dependent variational principle for tree tensor networks, SciPost Phys. 8, 024 (2020), 10.21468/SciPostPhys.8.2.024.
  25. G. Ceruti, C. Lubich and H. Walach, Time integration of tree tensor networks, SIAM J. Numer. Anal. 59(1), 289 (2021), 10.1137/20M1321838.
  26. Hand-waving and interpretive dance: An introductory course on tensor networks, Journal of Physics A: Mathematical and Theoretical 50(22), 223001 (2017), 10.1088/1751-8121/aa6dc3.
  27. Computing solution space properties of combinatorial optimization problems via generic tensor networks, SIAM J. Sci. Comput. 45(3), A1239 (2023), 10.1137/22M1501787.
  28. F. Verstraete and J. I. Cirac, Continuous matrix product states for quantum fields, Phys. Rev. Lett. 104(19) (2010), 10.1103/PhysRevLett.104.190405.
  29. Continuum tensor network field states, path integral representations and spatial symmetries, New J. Phys. 17(6) (2015), 10.1088/1367-2630/17/6/063039.
  30. A. Tilloy and J. I. Cirac, Continuous tensor network states for quantum fields, Phys. Rev. X 9(2) (2019), 10.1103/PhysRevX.9.021040.
  31. J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv:1708.00006 (arXiv:1708.00006) (2017).
  32. J. Biamonte, Lectures on quantum tensor networks, arXiv:1912.10049 (arXiv:1912.10049) (2020).
  33. Y.-Y. Shi, L.-M. Duan and G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A 74(2), 022320 (2006), 10.1103/PhysRevA.74.022320.
  34. R. Wille, S. Hillmich and L. Burgholzer, Decision diagrams for quantum computing, pp. 1–23, Springer International Publishing, 10.1007/978-3-031-15699-1_1 (2023).
  35. A. Sander, L. Burgholzer and R. Wille, Towards Hamiltonian simulation with decision diagrams, arXiv:2305.02337 (2023), 2305.02337.
  36. Generic construction of efficient matrix product operators, Phys. Rev. B 95, 035129 (2017), 10.1103/PhysRevB.95.035129.
  37. J. Vannimenus, Modulated phase of an Ising system with competing interactions on a Cayley tree, Z. Physik B - Condensed Matter 43, 141 (1981), 10.1007/BF01293605.
  38. T. Morita, Spin-glass and spin-crystal phase transition of a regular Ising model on the Cayley tree, Phys. Lett. A 94(5), 232 (1983), 10.1016/0375-9601(83)90456-5.
  39. B. A. Cipra, An introduction to the Ising model, The American Mathematical Monthly 94(10), 937 (1987), 10.1080/00029890.1987.12000742, https://doi.org/10.1080/00029890.1987.12000742.
  40. Hierarchy of stochastic pure states for open quantum system dynamics, Phys. Rev. Lett. 113(15) (2014), 10.1103/PhysRevLett.113.150403.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com