State Diagrams to determine Tree Tensor Network Operators (2311.13433v4)
Abstract: This work is concerned with tree tensor network operators (TTNOs) for representing quantum Hamiltonians. We first establish a mathematical framework connecting tree topologies with state diagrams. Based on these, we devise an algorithm for constructing a TTNO given a Hamiltonian. The algorithm exploits the tensor product structure of the Hamiltonian to add paths to a state diagram, while combining local operators if possible. We test the capabilities of our algorithm on random Hamiltonians for a given tree structure. Additionally, we construct explicit TTNOs for nearest neighbour interactions on a tree topology. Furthermore, we derive a bound on the bond dimension of tensor operators representing arbitrary interactions on trees. Finally, we consider an open quantum system in the form of a Heisenberg spin chain coupled to bosonic bath sites as a concrete example. We find that tree structures allow for lower bond dimensions of the Hamiltonian tensor network representation compared to a matrix product operator structure. This reduction is large enough to reduce the number of total tensor elements required as soon as the number of baths per spin reaches $3$.
- Fork tensor-product states: Efficient multiorbital real-time DMFT solver, Phys. Rev. X 7(3), 031013 (2017), 10.1103/PhysRevX.7.031013.
- K. Okunishi, H. Ueda and T. Nishino, Entanglement bipartitioning and tree tensor networks, arXiv:2210.11741 (2023), 2210.11741.
- Simulating strongly correlated quantum systems with tree tensor networks, Phys. Rev. B 82(20), 205105 (2010), 10.1103/PhysRevB.82.205105.
- N. Nakatani and G. K.-L. Chan, Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm, The J. Chem. Phys. 138(13), 134113 (2013), 10.1063/1.4798639.
- H. R. Larsson, Computing vibrational eigenstates with tree tensor network states (TTNS), J. Chem. Phys. 151(20), 204102 (2019), 10.1063/1.5130390.
- T3NS: Three-legged tree tensor network states, J. Chem. Theory Comput. 14(4), 2026–2033 (2018), 10.1021/acs.jctc.8b00098.
- Tree tensor network state with variable tensor order: An efficient multireference method for strongly correlated systems, J. Chem. Theory Comput. 11(3), 1027 (2015), 10.1021/ct501187j.
- L. Tagliacozzo, G. Evenbly and G. Vidal, Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law, Phys. Rev. B 80(23), 235127 (2009), 10.1103/PhysRevB.80.235127.
- Homogeneous binary trees as ground states of quantum critical Hamiltonians, Phys. Rev. A 81(6), 062335 (2010), 10.1103/PhysRevA.81.062335.
- Efficient tensor network simulation of IBM’s kicked Ising experiment, arXiv:2306.14887 (arXiv:2306.14887) (2023), 2306.14887.
- I. P. McCulloch, From density-matrix renormalization group to matrix product states, J. Stat. Mech.: Theor. Exp. 2007(10) (2007), 10.1088/1742-5468/2007/10/P10014.
- F. Fröwis, V. Nebendahl and W. Dür, Tensor operators: Constructions and applications for long-range interaction systems, Phys. Rev. A 81, 062337 (2010), 10.1103/PhysRevA.81.062337.
- An efficient matrix product operator representation of the quantum chemical Hamiltonian, J. Chem. Phys. 143(24) (2015), 10.1063/1.4939000.
- A general automatic method for optimal construction of matrix product operators using bipartite graph theory, J. Chem. Phys. 153, 084118 (2020), 10.1063/5.0018149.
- Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms, J. Chem. Phys. 145(1) (2016), 10.1063/1.4955108.
- G. M. Crosswhite, A. C. Doherty and G. Vidal, Applying matrix product operators to model systems with long-range interactions, Phys. Rev. B 78, 035116 (2008), 10.1103/PhysRevB.78.035116.
- G. M. Crosswhite and D. Bacon, Finite automata for caching in matrix product algorithms, Phys. Rev. A 78, 012356 (2008), 10.1103/PhysRevA.78.012356.
- U. Schollwöck, The density-matrix renormalization group in the age of matrix product states, Ann. Physics 326, 96 (2011), https://doi.org/10.1016/j.aop.2010.09.012.
- Unifying time evolution and optimization with matrix product states, Phys. Rev. B 94, 165116 (2016), 10.1103/PhysRevB.94.165116.
- Time-evolving a matrix product state with long-ranged interactions, Phys. Rev. B 91, 165112 (2015), 10.1103/PhysRevB.91.165112.
- F. Verstraete, J. J. García-Ripoll and J. I. Cirac, Matrix product density operators: Simulation of finite-temperature and dissipative systems, Phys. Rev. Lett. 93, 207204 (2004), 10.1103/PhysRevLett.93.207204.
- One-dimensional many-body entangled open quantum systems with tensor network methods, Quantum Sci. Technol. 4(1), 013001 (2018), 10.1088/2058-9565/aae724.
- Efficient non-Markovian quantum dynamics using time-evolving matrix product operators, Nat. Commun. 9, 3322 (2018), 10.1038/s41467-018-05617-3.
- D. Bauernfeind and M. Aichhorn, Time dependent variational principle for tree tensor networks, SciPost Phys. 8, 024 (2020), 10.21468/SciPostPhys.8.2.024.
- G. Ceruti, C. Lubich and H. Walach, Time integration of tree tensor networks, SIAM J. Numer. Anal. 59(1), 289 (2021), 10.1137/20M1321838.
- Hand-waving and interpretive dance: An introductory course on tensor networks, Journal of Physics A: Mathematical and Theoretical 50(22), 223001 (2017), 10.1088/1751-8121/aa6dc3.
- Computing solution space properties of combinatorial optimization problems via generic tensor networks, SIAM J. Sci. Comput. 45(3), A1239 (2023), 10.1137/22M1501787.
- F. Verstraete and J. I. Cirac, Continuous matrix product states for quantum fields, Phys. Rev. Lett. 104(19) (2010), 10.1103/PhysRevLett.104.190405.
- Continuum tensor network field states, path integral representations and spatial symmetries, New J. Phys. 17(6) (2015), 10.1088/1367-2630/17/6/063039.
- A. Tilloy and J. I. Cirac, Continuous tensor network states for quantum fields, Phys. Rev. X 9(2) (2019), 10.1103/PhysRevX.9.021040.
- J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv:1708.00006 (arXiv:1708.00006) (2017).
- J. Biamonte, Lectures on quantum tensor networks, arXiv:1912.10049 (arXiv:1912.10049) (2020).
- Y.-Y. Shi, L.-M. Duan and G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network, Phys. Rev. A 74(2), 022320 (2006), 10.1103/PhysRevA.74.022320.
- R. Wille, S. Hillmich and L. Burgholzer, Decision diagrams for quantum computing, pp. 1–23, Springer International Publishing, 10.1007/978-3-031-15699-1_1 (2023).
- A. Sander, L. Burgholzer and R. Wille, Towards Hamiltonian simulation with decision diagrams, arXiv:2305.02337 (2023), 2305.02337.
- Generic construction of efficient matrix product operators, Phys. Rev. B 95, 035129 (2017), 10.1103/PhysRevB.95.035129.
- J. Vannimenus, Modulated phase of an Ising system with competing interactions on a Cayley tree, Z. Physik B - Condensed Matter 43, 141 (1981), 10.1007/BF01293605.
- T. Morita, Spin-glass and spin-crystal phase transition of a regular Ising model on the Cayley tree, Phys. Lett. A 94(5), 232 (1983), 10.1016/0375-9601(83)90456-5.
- B. A. Cipra, An introduction to the Ising model, The American Mathematical Monthly 94(10), 937 (1987), 10.1080/00029890.1987.12000742, https://doi.org/10.1080/00029890.1987.12000742.
- Hierarchy of stochastic pure states for open quantum system dynamics, Phys. Rev. Lett. 113(15) (2014), 10.1103/PhysRevLett.113.150403.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.