Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thresholded Lasso Bandit (2010.11994v4)

Published 22 Oct 2020 in stat.ML and cs.LG

Abstract: In this paper, we revisit the regret minimization problem in sparse stochastic contextual linear bandits, where feature vectors may be of large dimension $d$, but where the reward function depends on a few, say $s_0\ll d$, of these features only. We present Thresholded Lasso bandit, an algorithm that (i) estimates the vector defining the reward function as well as its sparse support, i.e., significant feature elements, using the Lasso framework with thresholding, and (ii) selects an arm greedily according to this estimate projected on its support. The algorithm does not require prior knowledge of the sparsity index $s_0$ and can be parameter-free under some symmetric assumptions. For this simple algorithm, we establish non-asymptotic regret upper bounds scaling as $\mathcal{O}( \log d + \sqrt{T} )$ in general, and as $\mathcal{O}( \log d + \log T)$ under the so-called margin condition (a probabilistic condition on the separation of the arm rewards). The regret of previous algorithms scales as $\mathcal{O}( \log d + \sqrt{T \log (d T)})$ and $\mathcal{O}( \log T \log d)$ in the two settings, respectively. Through numerical experiments, we confirm that our algorithm outperforms existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kaito Ariu (32 papers)
  2. Kenshi Abe (32 papers)
  3. Alexandre Proutière (6 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com