Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Novel Defocus-Blur Region Detection Approach Based on DCT Feature and PCNN Structure (2311.12845v1)

Published 12 Oct 2023 in cs.CV

Abstract: The motion or out-of-focus effect in digital images is the main reason for the blurred regions in defocused-blurred images. It may adversely affect various image features such as texture, pixel, and region. Therefore, it is important to detect in-focused objects in defocused-blurred images after the segmentation of blurred and non-blurred regions. The state-of-the-art techniques are prone to noisy pixels, and their local descriptors for developing segmentation metrics are also complex. To address these issues, this research, therefore, proposed a novel and hybrid-focused detection approach based on Discrete Cosine Transform (DCT) coefficients and PC Neural Net (PCNN) structure. The proposed approach partially resolves the limitations of the existing contrast schemes to detect in-focused smooth objects from the out-of-focused smooth regions in the defocus dataset. The visual and quantitative evaluation illustrates that the proposed approach outperformed in terms of accuracy and efficiency to referenced algorithms. The highest F-score of the proposed approach on Zhao's dataset is 0.7940 whereas on Shi's dataset is 0.9178.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube