Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instance-aware 3D Semantic Segmentation powered by Shape Generators and Classifiers (2311.12291v1)

Published 21 Nov 2023 in cs.CV

Abstract: Existing 3D semantic segmentation methods rely on point-wise or voxel-wise feature descriptors to output segmentation predictions. However, these descriptors are often supervised at point or voxel level, leading to segmentation models that can behave poorly at instance-level. In this paper, we proposed a novel instance-aware approach for 3D semantic segmentation. Our method combines several geometry processing tasks supervised at instance-level to promote the consistency of the learned feature representation. Specifically, our methods use shape generators and shape classifiers to perform shape reconstruction and classification tasks for each shape instance. This enforces the feature representation to faithfully encode both structural and local shape information, with an awareness of shape instances. In the experiments, our method significantly outperform existing approaches in 3D semantic segmentation on several public benchmarks, such as Waymo Open Dataset, SemanticKITTI and ScanNetV2.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Bo Sun (100 papers)
  2. Qixing Huang (78 papers)
  3. Xiangru Huang (8 papers)

Summary

We haven't generated a summary for this paper yet.