Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing Prompt Injection Risks in 200+ Custom GPTs (2311.11538v2)

Published 20 Nov 2023 in cs.CR and cs.AI
Assessing Prompt Injection Risks in 200+ Custom GPTs

Abstract: In the rapidly evolving landscape of artificial intelligence, ChatGPT has been widely used in various applications. The new feature - customization of ChatGPT models by users to cater to specific needs has opened new frontiers in AI utility. However, this study reveals a significant security vulnerability inherent in these user-customized GPTs: prompt injection attacks. Through comprehensive testing of over 200 user-designed GPT models via adversarial prompts, we demonstrate that these systems are susceptible to prompt injections. Through prompt injection, an adversary can not only extract the customized system prompts but also access the uploaded files. This paper provides a first-hand analysis of the prompt injection, alongside the evaluation of the possible mitigation of such attacks. Our findings underscore the urgent need for robust security frameworks in the design and deployment of customizable GPT models. The intent of this paper is to raise awareness and prompt action in the AI community, ensuring that the benefits of GPT customization do not come at the cost of compromised security and privacy.

An Examination of Prompt Injection Vulnerabilities in Custom Generative Pre-trained Transformers

The paper "Assessing Prompt Injection Risks in 200+ Custom GPTs" addresses critical security vulnerabilities associated with the customization of Generative Pre-trained Transformers (GPTs). This research presents a comprehensive assessment of the vulnerabilities that arise when custom user-designed GPT models are configured to meet specific needs, emphasizing the susceptibility of these models to prompt injection attacks.

The paper identifies two primary risks posed by prompt injection: the exposure of system prompts and the leakage of designer-uploaded files. System prompt extraction involves tricking the customized GPT into revealing internal instructions provided during its creation. Although this may appear benign, it breaches intellectual property and confidentiality, posing a significant threat to privacy and security. The second risk, file leakage, occurs when attackers successfully extract files uploaded by the developers. This jeopardizes the privacy of sensitive information and undermines the integrity and intellectual property rights of the custom GPT creators.

The researchers tested over 200 custom GPT models to evaluate their vulnerability to these risks. Their systematic analysis reveals that most of these models are overwhelmingly susceptible to prompt injection attacks, with the majority of systems failing to safeguard system prompts and uploaded files. This suggests a substantial deficiency in the deployment security frameworks of personalized LLMs.

The methodological approach adopted by the researchers involved crafting adversarial prompts tailored for exploitation of custom GPTs, both with and without code interpreters. The experiments demonstrated alarmingly high success rates for prompt injection attacks, highlighting significant weaknesses in current defense mechanisms. The paper showed that disabling code interpreters improved resistance to these attacks to a degree but did not entirely eliminate the risk. Notably, the presence of code interpreters often facilitated more intricate attacks, allowing attackers to execute arbitrary code or breach system defenses with greater efficacy.

In the red-teaming evaluation, a popular defensive prompt was tested against adept attackers. The evaluation revealed that, despite its implementation, the defensive prompt remains ineffective against sophisticated adversarial techniques. Experts were able to bypass defenses through multiple attempts, emphasizing the inadequacy of existing protective measures when faced with knowledgeable and determined adversaries.

The implications of these findings underscore the urgent need for more robust security measures in the development and administration of customized GPT models. The vulnerability of these models highlights the necessity for vigilant oversight in AI deployment, particularly given their potential access to sensitive and proprietary information. As AI systems become increasingly embedded in organizational and consumer applications, ensuring security against prompt injection and similar attacks will become pivotal.

Future work in AI must focus on enhancing security frameworks that address the identified vulnerabilities. Research should also explore novel defense techniques that expand beyond traditional prompts and consider the multifaceted routes through which adversaries may exploit AI systems. The results of this paper should act as a catalyst for the AI community, promoting a shift toward more comprehensive protections that balance the functional advantages of custom GPTs with the imperatives of security and privacy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Jiahao Yu (23 papers)
  2. Yuhang Wu (41 papers)
  3. Dong Shu (16 papers)
  4. Mingyu Jin (38 papers)
  5. Xinyu Xing (34 papers)
  6. Sabrina Yang (3 papers)
Citations (33)
Youtube Logo Streamline Icon: https://streamlinehq.com