Affine Invariance in Continuous-Domain Convolutional Neural Networks (2311.09245v2)
Abstract: The notion of group invariance helps neural networks in recognizing patterns and features under geometric transformations. Group convolutional neural networks enhance traditional convolutional neural networks by incorporating group-based geometric structures into their design. This research studies affine invariance on continuous-domain convolutional neural networks. Despite other research considering isometric invariance or similarity invariance, we focus on the full structure of affine transforms generated by the group of all invertible $2 \times 2$ real matrices (generalized linear group $\mathrm{GL}_2(\mathbb{R})$). We introduce a new criterion to assess the invariance of two signals under affine transformations. The input image is embedded into the affine Lie group $G_2 = \mathbb{R}2 \ltimes \mathrm{GL}_2(\mathbb{R})$ to facilitate group convolution operations that respect affine invariance. Then, we analyze the convolution of embedded signals over $G_2$. In sum, our research could eventually extend the scope of geometrical transformations that usual deep-learning pipelines can handle.