Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling equivariance for arbitrary Lie groups (2111.08251v2)

Published 16 Nov 2021 in cs.CV, cs.LG, and cs.NE

Abstract: Although provably robust to translational perturbations, convolutional neural networks (CNNs) are known to suffer from extreme performance degradation when presented at test time with more general geometric transformations of inputs. Recently, this limitation has motivated a shift in focus from CNNs to Capsule Networks (CapsNets). However, CapsNets suffer from admitting relatively few theoretical guarantees of invariance. We introduce a rigourous mathematical framework to permit invariance to any Lie group of warps, exclusively using convolutions (over Lie groups), without the need for capsules. Previous work on group convolutions has been hampered by strong assumptions about the group, which precludes the application of such techniques to common warps in computer vision such as affine and homographic. Our framework enables the implementation of group convolutions over any finite-dimensional Lie group. We empirically validate our approach on the benchmark affine-invariant classification task, where we achieve 30% improvement in accuracy against conventional CNNs while outperforming most CapsNets. As further illustration of the generality of our framework, we train a homography-convolutional model which achieves superior robustness on a homography-perturbed dataset, where CapsNet results degrade.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lachlan Ewen MacDonald (9 papers)
  2. Sameera Ramasinghe (36 papers)
  3. Simon Lucey (107 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.