Emergent Mind


Most existing chain-of-thought (CoT) prompting methods suffer from the issues of generalizability and consistency, as they often rely on instance-specific solutions that may not be applicable to other cases and lack task-level consistency in their reasoning steps. To address these limitations, we propose a comprehensive framework, StrategyLLM, harnessing the capabilities of LLMs to tackle various tasks. The framework improves generalizability by formulating general problem-solving strategies and enhances consistency by producing consistent solutions using these strategies. StrategyLLM employs four LLM-based agents: strategy generator, executor, optimizer, and evaluator, working together to generate, evaluate, and select promising strategies for a given task automatically. The experimental results demonstrate that StrategyLLM outperforms the competitive baseline CoT-SC that requires human-annotated solutions on 13 datasets across 4 challenging tasks without human involvement, including math reasoning (39.2% $\rightarrow$ 43.3%), commonsense reasoning (70.3% $\rightarrow$ 72.5%), algorithmic reasoning (51.7% $\rightarrow$ 62.0%), and symbolic reasoning (30.0% $\rightarrow$ 79.2%).

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.

Test Your Knowledge

You answered out of questions correctly.

Well done!