Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mixture of Coupled HMMs for Robust Modeling of Multivariate Healthcare Time Series (2311.07867v1)

Published 14 Nov 2023 in cs.LG, stat.AP, and stat.ML

Abstract: Analysis of multivariate healthcare time series data is inherently challenging: irregular sampling, noisy and missing values, and heterogeneous patient groups with different dynamics violating exchangeability. In addition, interpretability and quantification of uncertainty are critically important. Here, we propose a novel class of models, a mixture of coupled hidden Markov models (M-CHMM), and demonstrate how it elegantly overcomes these challenges. To make the model learning feasible, we derive two algorithms to sample the sequences of the latent variables in the CHMM: samplers based on (i) particle filtering and (ii) factorized approximation. Compared to existing inference methods, our algorithms are computationally tractable, improve mixing, and allow for likelihood estimation, which is necessary to learn the mixture model. Experiments on challenging real-world epidemiological and semi-synthetic data demonstrate the advantages of the M-CHMM: improved data fit, capacity to efficiently handle missing and noisy measurements, improved prediction accuracy, and ability to identify interpretable subsets in the data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.