Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Neural Networks for Power Flow Analysis (2311.06293v2)

Published 4 Nov 2023 in quant-ph, cs.LG, cs.SY, and eess.SY

Abstract: This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two datasets based on 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training dataset size needed, (iv) training error, and (v) training process stability. The results show that the developed hybrid quantum-classical neural network outperforms both quantum and classical neural networks, and hence can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) and fault-tolerant quantum (FTQ) era.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. O. D. Montoya, W. Gil-González, and A. Garces, “Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges,” International Journal of Electrical Power & Energy Systems, vol. 123, 2020.
  2. K. Baker, “Solutions of DC OPF are Never AC Feasible,” 2019.
  3. J. S. Giraldo, O. D. Montoya, P. P. Vergara, and F. Milano, “A fixed-point current injection power flow for electric distribution systems using Laurent series,” Electric Power Systems Research, vol. 211, 2022.
  4. T. Pham and X. Li, “Neural Network-based Power Flow Model,” in 2022 IEEE Green Technologies Conference (GreenTech).
  5. B. Donon, R. Clément, B. Donnot, A. Marot, I. Guyon, and M. Schoenauer, “Neural networks for power flow: Graph neural solver,” Electric Power Systems Research, vol. 189, 2020.
  6. S. M. Miraftabzadeh, F. Foiadelli, M. Longo, and M. Pasetti, “A Survey of Machine Learning Applications for Power System Analytics,” in 2019 IEEE International Conference on Environment and Electrical Engineering (EEEIC).
  7. F. Feng, Y. Zhou, and P. Zhang, “Quantum Power Flow,” IEEE Transactions on Power Systems, vol. 36, 2021.
  8. L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, M. Walczak, J. Pfrommer, A. Pick, R. Ramamurthy, J. Garcke, C. Bauckhage, and J. Schuecker, “Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems,” IEEE Transactions on Knowledge and Data Engineering, 2021.
  9. F. Feng, P. Zhang, Y. Zhou, and Z. Tang, “Quantum microgrid state estimation,” Electric Power Systems Research, vol. 212, 2022.
  10. S. Golestan, M. Habibi, S. Mousazadeh Mousavi, J. Guerrero, and J. Vasquez, “Quantum computation in power systems: An overview of recent advances,” Energy Reports, vol. 9, 2023.
  11. F. Feng, Y. Zhou, and P. Zhang, “Noise-Resilient Quantum Power Flow,” 2022.
  12. T. Morstyn, “Annealing-Based Quantum Computing for Combinatorial Optimal Power Flow,” IEEE Transactions on Smart Grid, vol. 14, 2023.
  13. M. Schuld, I. Sinayskiy, and F. Petruccione, “The quest for a Quantum Neural Network,” Quantum Information Processing, vol. 13, 2014.
  14. K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, D. Scheiermann, and R. Wolf, “Training deep quantum neural networks,” Nature Communications, vol. 11, 2020.
  15. K. Beer, “Quantum neural networks,” Institutionelles Repositorium der Leibniz Universitat Hannover, 2022.
  16. R. Eskandarpour, K. Ghosh, A. Khodaei, L. Zhang, A. Paaso, and S. Bahramirad, “Quantum Computing Solution of DC Power Flow,” 2020.
  17. Y. Zhou and P. Zhang, “Noise-Resilient Quantum Machine Learning for Stability Assessment of Power Systems,” 2021.
  18. B. Sævarsson, S. Chatzivasileiadis, H. Jóhannsson, and J. Østergaard, “Quantum Computing for Power Flow Algorithms: Testing on real Quantum Computers,” 2022.
  19. N. Nikmehr, P. Zhang, and M. A. Bragin, “Quantum Distributed Unit Commitment: An Application in Microgrids,” IEEE Transactions on Power Systems, vol. 37, 2022.
  20. H. Jing, Y. Wang, and Y. Li, “Data-driven quantum approximate optimization algorithm for power systems,” Communications Engineering, vol. 2, 2023.
  21. F. Amani, R. Mahroo, and A. Kargarian, “Quantum-Enhanced DC Optimal Power Flow,” in 2023 IEEE Texas Power and Energy Conference (TPEC).
  22. A. Ajagekar and F. You, “Quantum computing based hybrid deep learning for fault diagnosis in electrical power systems,” Applied Energy, vol. 303, 2021.
  23. P. Halffmann, P. Holzer, K. Plociennik, and M. Trebing, “A Quantum Computing Approach for the Unit Commitment Problem,” 2022.
  24. H. T. Alrikabi, I. A. Aljazaery, J. S. Qateef, A. H. M. Alaidi, and R. M. Al_airaji, “Face Patterns Analysis and Recognition System Based on Quantum Neural Network QNN,” International Journal of Interactive Mobile Technologies (iJIM), vol. 16, 2022.
  25. A. Sagingalieva, M. Kordzanganeh, N. Kenbayev, D. Kosichkina, T. Tomashuk, and A. Melnikov, “Hybrid Quantum Neural Network for Drug Response Prediction,” Cancers, vol. 15, 2023.
  26. E. Paquet and F. Soleymani, “QuantumLeap: Hybrid quantum neural network for financial predictions,” Expert Systems with Applications, vol. 195, 2022.
  27. M. Baran and F. Wu, “Network reconfiguration in distribution systems for loss reduction and load balancing,” IEEE Transactions on Power Delivery, vol. 4, 1989.
  28. K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Physical Review A, vol. 98, 2018.
  29. J. Fang, M. Xu, H. Chen, B. Shuai, Z. Tu, and J. Tighe, “An In-depth Study of Stochastic Backpropagation,” 2022.
  30. H.-L. Huang, X.-Y. Xu, C. Guo, G. Tian, S.-J. Wei, X. Sun, W.-S. Bao, and G.-L. Long, “Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation,” Science China Physics, Mechanics & Astronomy, vol. 66, 2023.
Citations (5)

Summary

We haven't generated a summary for this paper yet.