Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Physics-Informed, Deep Double Reservoir Network for Forecasting Boundary Layer Velocity (2311.05728v3)

Published 9 Nov 2023 in physics.flu-dyn and stat.AP

Abstract: When a fluid flows over a solid surface, it creates a thin boundary layer where the flow velocity is influenced by the surface through viscosity, and can transition from laminar to turbulent at sufficiently high speeds. Understanding and forecasting the fluid dynamics under these conditions is one of the most challenging scientific problems in fluid dynamics. It is therefore of high interest to formulate models able to capture the nonlinear spatio-temporal velocity structure as well as produce forecasts in a computationally efficient manner. Traditional statistical approaches are limited in their ability to produce timely forecasts of complex, nonlinear spatio-temporal structures which are at the same time able to incorporate the underlying flow physics. In this work, we propose a model to accurately forecast boundary layer velocities with a deep double reservoir computing network which is capable of capturing the complex, nonlinear dynamics of the boundary layer while at the same time incorporating physical constraints via a penalty obtained by a Partial Differential Equation (PDE). Simulation studies on a one-dimensional viscous fluid demonstrate how the proposed model is able to produce accurate forecasts while simultaneously accounting for energy loss. The application focuses on boundary layer data in a water tunnel with a PDE penalty derived from an appropriate simplification of the Navier-Stokes equations, showing improved forecasting by the proposed approach in terms of mass conservation and variability of velocity fluctuation against non-physics-informed methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.