Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

Characterization of the Hamamatsu 8-inch R14688-100 PMT (2311.05080v2)

Published 9 Nov 2023 in physics.ins-det and hep-ex

Abstract: Large-scale optical neutrino and dark-matter detectors rely on large-area photomultiplier tubes (PMTs) for cost-effective light detection. The new R14688-100 8-inch PMT developed by Hamamatsu provides state-of-the-art timing resolution of around 1 ns (FWHM), which can help improve vertex reconstruction and enable Cherenkov and scintillation light separation in scintillation-based detectors. This PMT also provides excellent charge resolution, allowing for precision photoelectron counting and improved energy reconstruction. The Eos experiment is the first large-scale optical detector to utilize these PMTs. In this manuscript we present a characterization of the R14688-100 single photoelectron response, such as the transit-time spreads, the dark-rates, and the afterpulsing. The single photoelectron response measurements are performed for the 206 PMTs that will be used in Eos.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. Q.R. Ahmad “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory” In Phys. Rev. Lett. 89, 2002, pp. 011301 DOI: 10.1103/PhysRevLett.89.011301
  2. Y. Fukuda “Evidence for oscillation of atmospheric neutrinos” In Phys. Rev. Lett. 81, 1998, pp. 1562–1567 DOI: 10.1103/PhysRevLett.81.1562
  3. C. Arpesella “Direct Measurement of the Be-7 Solar Neutrino Flux with 192 Days of Borexino Data” In Phys. Rev. Lett. 101, 2008, pp. 091302 DOI: 10.1103/PhysRevLett.101.091302
  4. R. Ajaj “Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB” In Phys. Rev. D 100.2, 2019, pp. 022004 DOI: 10.1103/PhysRevD.100.022004
  5. F.P. An “Observation of electron-antineutrino disappearance at Daya Bay” In Phys. Rev. Lett. 108, 2012, pp. 171803 DOI: 10.1103/PhysRevLett.108.171803
  6. M. Askins “THEIA: an advanced optical neutrino detector” In Eur. Phys. J. C 80.5, 2020, pp. 416 DOI: 10.1140/epjc/s10052-020-7977-8
  7. “A quantitative approach to select PMTs for large detectors” In Nucl. Instrum. Meth. A 947, 2019, pp. 162766 DOI: 10.1016/j.nima.2019.162766
  8. T. Anderson “Eos: conceptual design for a demonstrator of hybrid optical detector technology” In JINST 18.02, 2023, pp. P02009 DOI: 10.1088/1748-0221/18/02/P02009
  9. “Spectral Photon Sorting For Large-Scale Cherenkov and Scintillation Detectors” In Phys. Rev. D 101.7, 2020, pp. 072002 DOI: 10.1103/PhysRevD.101.072002
  10. Minfang Yeh “A new water-based liquid scintillator and potential applications” In Nucl. Instrum. Meth. A 660, 2011, pp. 51–56 DOI: 10.1016/j.nima.2011.08.040
  11. Steven D. Biller, Edward J. Leming and Josephine L. Paton “Slow fluors for effective separation of Cherenkov light in liquid scintillators” In Nucl. Instrum. Meth. A 972, 2020, pp. 164106 DOI: 10.1016/j.nima.2020.164106
  12. Tanner Kaptanoglu “Characterization of the Hamamatsu 8” R5912-MOD Photomultiplier Tube” In Nucl. Instrum. Meth. A 889, 2018, pp. 69–77 DOI: 10.1016/j.nima.2018.01.086
  13. Hamamatsu “Photomultiplier tube R14688-100: Hamamatsu Photonics” [Accessed June 15, 2023], https://www.hamamatsu.com/us/en/product/optical-sensors/pmt/pmt_tube-alone/head-on-type/R14688-100.html, 2023
  14. J. Brack “Characterization of the Hamamatsu R11780 12 inch Photomultiplier Tube” In Nucl. Instrum. Meth. A 712, 2013, pp. 162–173 DOI: 10.1016/j.nima.2013.02.022
  15. Xiang-Cui Lei “Evaluation of new large area PMT with high quantum efficiency” In Chin. Phys. C 40.2, 2016, pp. 026002 DOI: 10.1088/1674-1137/40/2/026002
  16. “Characterization of the ETEL D784UKFLB 11 in. photomultiplier tube” In Nucl. Instrum. Meth. A 852, 2017, pp. 15–19 DOI: 10.1016/j.nima.2017.01.067
  17. Morgan Askins “ratpac-two” Github, https://github.com/rat-pac/ratpac-two, 2023
  18. Hamamatsu “Datasheet for R11265U SERIES / H11934 SERIES” [Accessed June 16, 2022], 2019
  19. O.A. Akindele “Acceptance tests of Hamamatsu R7081 photomultiplier tubes”, 2023 arXiv:2306.09926 [physics.ins-det]
  20. Hamamatsu “Photomultiplier Tubes, Basics and Application, Fourth Addition” [Accessed Aug. 10, 2023], https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/etd/PMT_handbook_v4E.pdf, 2023
  21. “A study on ion initiated photomultiplier afterpulses” In Nucl. Instrum. Meth. A 574.1, 2007, pp. 121–126 DOI: https://doi.org/10.1016/j.nima.2007.01.093
  22. K.J. Ma “Time and amplitude of afterpulse measured with a large size photomultiplier tube” In Nucl. Instrum. Meth. A 629.1 Elsevier BV, 2011, pp. 93–100 DOI: 10.1016/j.nima.2010.11.095
  23. D.S. Akerib “An Ultra-Low Background PMT for Liquid Xenon Detectors” In Nucl. Instrum. Meth. A 703, 2013, pp. 1–6 DOI: 10.1016/j.nima.2012.11.020
  24. Douglas Tiedt, Brianna Mount and Ayla Rodriguez “Counting facilities at the Black Hills Underground Campus” In AIP Conference Proceedings 2908.1, 2023, pp. 020003 DOI: 10.1063/5.0161194
  25. D.S. Akerib “The LUX-ZEPLIN (LZ) radioactivity and cleanliness control programs” [Erratum: Eur.Phys.J.C 82, 221 (2022)] In Eur. Phys. J. C 80.11, 2020, pp. 1044 DOI: 10.1140/epjc/s10052-020-8420-x
  26. J. Aalbers “Background determination for the LUX-ZEPLIN dark matter experiment” In Phys. Rev. D 108.1, 2023, pp. 012010 DOI: 10.1103/PhysRevD.108.012010
  27. Hamamatsu, private communication
  28. V. Albanese “The SNO+ experiment” In JINST 16.08, 2021, pp. P08059 DOI: 10.1088/1748-0221/16/08/P08059
  29. “Measurements of photomultiplier single photon counting efficiency for the Sudbury Neutrino Observatory” In Nucl. Instrum. Meth. A 432.2, 1999, pp. 364–373 DOI: https://doi.org/10.1016/S0168-9002(99)00500-8
  30. M. Akashi-Ronquest “Improving Photoelectron Counting and Particle Identification in Scintillation Detectors with Bayesian Techniques” In Astropart. Phys. 65, 2015, pp. 40–54 DOI: 10.1016/j.astropartphys.2014.12.006
  31. “MeV-scale performance of water-based and pure liquid scintillator detectors” In Phys. Rev. D 103.5, 2021, pp. 052004 DOI: 10.1103/PhysRevD.103.052004
  32. Mingjun Chen “Development of a magnetic shield for 20-inch microchannel plate photomultiplier tubes” In Nucl. Instrum. Meth. A 1039, 2022, pp. 167128 DOI: 10.1016/j.nima.2022.167128
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com