Relaxing cosmological constraints on current neutrino masses (2311.01803v2)
Abstract: We show that a mass-varying neutrino model driven by scalar field dark energy relaxes the existing upper bound on the current neutrino mass to ${\sum m_\nu < 0.72}$ eV. We extend the standard $\Lambda$ cold dark matter model by introducing two parameters: the rate of change of the scalar field with the number of $e$-folds and the coupling between neutrinos and the field. We investigate how they affect the matter power spectrum, the cosmic microwave background anisotropies and its lensing potential. The model is tested against Planck observations of temperature, polarization, and lensing, combined with baryon acoustic oscillation measurements that constrain the background evolution. The results indicate that small couplings favor a cosmological constant, while larger couplings favor a dynamical dark energy, weakening the upper bound on current neutrino masses.
- J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006), arXiv:astro-ph/0603494 .
- M. Gerbino and M. Lattanzi, Frontiers in Physics 5 (2018), 10.3389/fphy.2017.00070.
- Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 .
- K. Abe et al. (T2K), Phys. Rev. Lett. 112, 061802 (2014), arXiv:1311.4750 [hep-ex] .
- S. Roy Choudhury and S. Hannestad, JCAP 07, 037 (2020), arXiv:1907.12598 [astro-ph.CO] .
- S. Gariazzo et al., JCAP 10, 010 (2022), arXiv:2205.02195 [hep-ph] .
- M. Aker et al. (KATRIN), Phys. Rev. Lett. 123, 221802 (2019), arXiv:1909.06048 [hep-ex] .
- S. Roy Choudhury and S. Choubey, JCAP 09, 017 (2018), arXiv:1806.10832 [astro-ph.CO] .
- S. Roy Choudhury and A. Naskar, Eur. Phys. J. C 79, 262 (2019), arXiv:1807.02860 [astro-ph.CO] .
- S. S. Gershtein and Y. B. Zel’dovich, ZhETF Pisma Redaktsiiu 4, 174 (1966).
- N. Aghanim et al. (Planck), A&A 641, A6 (2020a), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
- R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
- S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
- L. Atayde and N. Frusciante, Phys. Rev. D 107, 124048 (2023), arXiv:2306.03015 [astro-ph.CO] .
- A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201 .
- S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), arXiv:astro-ph/9812133 .
- R. D. Peccei, Phys. Rev. D 71, 023527 (2005), arXiv:hep-ph/0411137 .
- C. Wetterich, Phys. Lett. B 655, 201 (2007), arXiv:0706.4427 [hep-ph] .
- K. Ichiki and Y.-Y. Keum, JCAP 06, 005 (2008), arXiv:0705.2134 [astro-ph] .
- N. J. Nunes and J. E. Lidsey, Phys. Rev. D 69, 123511 (2004), arXiv:astro-ph/0310882 .
- P. J. E. Peebles and B. Ratra, apjl 325, L17 (1988).
- B. J. Barros and V. da Fonseca, JCAP 06, 048 (2023), arXiv:2209.12189 [astro-ph.CO] .
- J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, 161301 (2020), arXiv:1911.11760 [astro-ph.CO] .
- K. C. Wong et al., Mon. Not. Roy. Astron. Soc. 498, 1420 (2020), arXiv:1907.04869 [astro-ph.CO] .
- J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,” (2011), arXiv:1104.2932 [astro-ph.IM] .
- A. c. v. Slosar, Phys. Rev. D 73, 123501 (2006).
- E. Di Valentino et al. (CORE), JCAP 04, 017 (2018), arXiv:1612.00021 [astro-ph.CO] .
- M. Chevallier and D. Polarski, International Journal of Modern Physics D 10, 213 (2001).
- E. Linder, Physical review letters 90, 091301 (2003).
- N. J. Nunes, AIP Conf. Proc. 736, 135 (2004).
- E. Lifshitz, J. Phys. (USSR) 10, 116 (1946).
- C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995), arXiv:astro-ph/9506072 .
- J. Lesgourgues and T. Tram, Journal of Cosmology and Astroparticle Physics 2011, 032 (2011).
- L. Amendola, Mon. Not. Roy. Astron. Soc. 312, 521 (2000), arXiv:astro-ph/9906073 .
- D. J. ”Eisenstein and others” (SDSS), Astrophys. J. 633, 560 (2005), arXiv:astro-ph/0501171 .
- S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362, 505 (2005), arXiv:astro-ph/0501174 .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A8 (2020b), arXiv:1807.06210 [astro-ph.CO] .
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5 (2020c), arXiv:1907.12875 [astro-ph.CO] .
- C. P. Ahn et al., The Astrophysical Journal Supplement Series 203, 21 (2012).
- K. Akita and M. Yamaguchi, JCAP 08, 012 (2020), arXiv:2005.07047 [hep-ph] .
- T. Brinckmann and J. Lesgourgues, Physics of the Dark Universe 24, 100260 (2019).
- A. Lewis, “GetDist: Monte Carlo sample analyzer,” Astrophysics Source Code Library, record ascl:1910.018 (2019), arXiv:1910.13970 [astro-ph.IM] .
- A. Amon et al. (DES), Phys. Rev. D 105, 023514 (2022), arXiv:2105.13543 [astro-ph.CO] .
- T. M. C. Abbott et al. (Kilo-Degree Survey, DES), (2023), arXiv:2305.17173 [astro-ph.CO] .
- L. F. Secco et al. (DES), Phys. Rev. D 105, 023515 (2022), arXiv:2105.13544 [astro-ph.CO] .
- D. H. F. de Souza and R. Rosenfeld, (2023), arXiv:2302.04644 [astro-ph.CO] .
- F. J. Qu et al. (ACT), (2023), arXiv:2304.05202 [astro-ph.CO] .
- H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), arXiv:1606.05338 [astro-ph.CO] .
- P. Ade et al., Journal of Cosmology and Astroparticle Physics 2019, 056–056 (2019).
- K. N. Abazajian et al., “Cmb-s4 science book, first edition,” (2016), arXiv:1610.02743 [astro-ph.CO] .
- M. Hazumi et al., Journal of Low Temperature Physics 194, 443 (2019).
- D. Collaboration, A. Aghamousa, et al., “The desi experiment part i: Science,targeting, and survey design,” (2016), arXiv:1611.00036 [astro-ph.IM] .
- R. Laureijs et al., “Euclid definition study report,” (2011), arXiv:1110.3193 [astro-ph.CO] .
- L. S. Collaboration, P. A. Abell, et al., “Lsst science book, version 2.0,” (2009), arXiv:0912.0201 [astro-ph.IM] .
- D. J. Bacon et al. (SKA), Publ. Astron. Soc. Austral. 37, e007 (2020), arXiv:1811.02743 [astro-ph.CO] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.