Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Relaxing cosmological constraints on current neutrino masses (2311.01803v2)

Published 3 Nov 2023 in astro-ph.CO and hep-ph

Abstract: We show that a mass-varying neutrino model driven by scalar field dark energy relaxes the existing upper bound on the current neutrino mass to ${\sum m_\nu < 0.72}$ eV. We extend the standard $\Lambda$ cold dark matter model by introducing two parameters: the rate of change of the scalar field with the number of $e$-folds and the coupling between neutrinos and the field. We investigate how they affect the matter power spectrum, the cosmic microwave background anisotropies and its lensing potential. The model is tested against Planck observations of temperature, polarization, and lensing, combined with baryon acoustic oscillation measurements that constrain the background evolution. The results indicate that small couplings favor a cosmological constant, while larger couplings favor a dynamical dark energy, weakening the upper bound on current neutrino masses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. J. Lesgourgues and S. Pastor, Phys. Rept. 429, 307 (2006), arXiv:astro-ph/0603494 .
  2. M. Gerbino and M. Lattanzi, Frontiers in Physics 5 (2018), 10.3389/fphy.2017.00070.
  3. Y. Fukuda et al. (Super-Kamiokande), Phys. Rev. Lett. 81, 1562 (1998), arXiv:hep-ex/9807003 .
  4. K. Abe et al. (T2K), Phys. Rev. Lett. 112, 061802 (2014), arXiv:1311.4750 [hep-ex] .
  5. S. Roy Choudhury and S. Hannestad, JCAP 07, 037 (2020), arXiv:1907.12598 [astro-ph.CO] .
  6. S. Gariazzo et al., JCAP 10, 010 (2022), arXiv:2205.02195 [hep-ph] .
  7. M. Aker et al. (KATRIN), Phys. Rev. Lett. 123, 221802 (2019), arXiv:1909.06048 [hep-ex] .
  8. S. Roy Choudhury and S. Choubey, JCAP 09, 017 (2018), arXiv:1806.10832 [astro-ph.CO] .
  9. S. Roy Choudhury and A. Naskar, Eur. Phys. J. C 79, 262 (2019), arXiv:1807.02860 [astro-ph.CO] .
  10. S. S. Gershtein and Y. B. Zel’dovich, ZhETF Pisma Redaktsiiu 4, 174 (1966).
  11. N. Aghanim et al. (Planck), A&A 641, A6 (2020a), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  12. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
  13. S. Alam et al. (eBOSS), Phys. Rev. D 103, 083533 (2021), arXiv:2007.08991 [astro-ph.CO] .
  14. L. Atayde and N. Frusciante, Phys. Rev. D 107, 124048 (2023), arXiv:2306.03015 [astro-ph.CO] .
  15. A. G. Riess et al. (Supernova Search Team), Astron. J. 116, 1009 (1998), arXiv:astro-ph/9805201 .
  16. S. Perlmutter et al. (Supernova Cosmology Project), Astrophys. J. 517, 565 (1999), arXiv:astro-ph/9812133 .
  17. R. D. Peccei, Phys. Rev. D 71, 023527 (2005), arXiv:hep-ph/0411137 .
  18. C. Wetterich, Phys. Lett. B 655, 201 (2007), arXiv:0706.4427 [hep-ph] .
  19. K. Ichiki and Y.-Y. Keum, JCAP 06, 005 (2008), arXiv:0705.2134 [astro-ph] .
  20. N. J. Nunes and J. E. Lidsey, Phys. Rev. D 69, 123511 (2004), arXiv:astro-ph/0310882 .
  21. P. J. E. Peebles and B. Ratra, apjl 325, L17 (1988).
  22. B. J. Barros and V. da Fonseca, JCAP 06, 048 (2023), arXiv:2209.12189 [astro-ph.CO] .
  23. J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, 161301 (2020), arXiv:1911.11760 [astro-ph.CO] .
  24. K. C. Wong et al., Mon. Not. Roy. Astron. Soc. 498, 1420 (2020), arXiv:1907.04869 [astro-ph.CO] .
  25. J. Lesgourgues, “The cosmic linear anisotropy solving system (class) i: Overview,”  (2011), arXiv:1104.2932 [astro-ph.IM] .
  26. A. c. v. Slosar, Phys. Rev. D 73, 123501 (2006).
  27. E. Di Valentino et al. (CORE), JCAP 04, 017 (2018), arXiv:1612.00021 [astro-ph.CO] .
  28. M. Chevallier and D. Polarski, International Journal of Modern Physics D 10, 213 (2001).
  29. E. Linder, Physical review letters 90, 091301 (2003).
  30. N. J. Nunes, AIP Conf. Proc. 736, 135 (2004).
  31. E. Lifshitz, J. Phys. (USSR) 10, 116 (1946).
  32. C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995), arXiv:astro-ph/9506072 .
  33. J. Lesgourgues and T. Tram, Journal of Cosmology and Astroparticle Physics 2011, 032 (2011).
  34. L. Amendola, Mon. Not. Roy. Astron. Soc. 312, 521 (2000), arXiv:astro-ph/9906073 .
  35. D. J. ”Eisenstein and others” (SDSS), Astrophys. J. 633, 560 (2005), arXiv:astro-ph/0501171 .
  36. S. Cole et al. (2dFGRS), Mon. Not. Roy. Astron. Soc. 362, 505 (2005), arXiv:astro-ph/0501174 .
  37. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A8 (2020b), arXiv:1807.06210 [astro-ph.CO] .
  38. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A5 (2020c), arXiv:1907.12875 [astro-ph.CO] .
  39. C. P. Ahn et al., The Astrophysical Journal Supplement Series 203, 21 (2012).
  40. K. Akita and M. Yamaguchi, JCAP 08, 012 (2020), arXiv:2005.07047 [hep-ph] .
  41. T. Brinckmann and J. Lesgourgues, Physics of the Dark Universe 24, 100260 (2019).
  42. A. Lewis, “GetDist: Monte Carlo sample analyzer,” Astrophysics Source Code Library, record ascl:1910.018 (2019), arXiv:1910.13970 [astro-ph.IM] .
  43. A. Amon et al. (DES), Phys. Rev. D 105, 023514 (2022), arXiv:2105.13543 [astro-ph.CO] .
  44. T. M. C. Abbott et al. (Kilo-Degree Survey, DES),   (2023), arXiv:2305.17173 [astro-ph.CO] .
  45. L. F. Secco et al. (DES), Phys. Rev. D 105, 023515 (2022), arXiv:2105.13544 [astro-ph.CO] .
  46. D. H. F. de Souza and R. Rosenfeld,   (2023), arXiv:2302.04644 [astro-ph.CO] .
  47. F. J. Qu et al. (ACT),  (2023), arXiv:2304.05202 [astro-ph.CO] .
  48. H. Hildebrandt et al., Mon. Not. Roy. Astron. Soc. 465, 1454 (2017), arXiv:1606.05338 [astro-ph.CO] .
  49. P. Ade et al., Journal of Cosmology and Astroparticle Physics 2019, 056–056 (2019).
  50. K. N. Abazajian et al., “Cmb-s4 science book, first edition,”  (2016), arXiv:1610.02743 [astro-ph.CO] .
  51. M. Hazumi et al., Journal of Low Temperature Physics 194, 443 (2019).
  52. D. Collaboration, A. Aghamousa, et al., “The desi experiment part i: Science,targeting, and survey design,”  (2016), arXiv:1611.00036 [astro-ph.IM] .
  53. R. Laureijs et al., “Euclid definition study report,”  (2011), arXiv:1110.3193 [astro-ph.CO] .
  54. L. S. Collaboration, P. A. Abell, et al., “Lsst science book, version 2.0,”  (2009), arXiv:0912.0201 [astro-ph.IM] .
  55. D. J. Bacon et al. (SKA), Publ. Astron. Soc. Austral. 37, e007 (2020), arXiv:1811.02743 [astro-ph.CO] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube