Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 88 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Kimi K2 207 tok/s Pro
2000 character limit reached

An Empirical Study of Benchmarking Chinese Aspect Sentiment Quad Prediction (2311.01713v1)

Published 3 Nov 2023 in cs.CL and cs.AI

Abstract: Aspect sentiment quad prediction (ASQP) is a critical subtask of aspect-level sentiment analysis. Current ASQP datasets are characterized by their small size and low quadruple density, which hinders technical development. To expand capacity, we construct two large Chinese ASQP datasets crawled from multiple online platforms. The datasets hold several significant characteristics: larger size (each with 10,000+ samples) and rich aspect categories, more words per sentence, and higher density than existing ASQP datasets. Moreover, we are the first to evaluate the performance of Generative Pre-trained Transformer (GPT) series models on ASQP and exhibit potential issues. The experiments with state-of-the-art ASQP baselines underscore the need to explore additional techniques to address ASQP, as well as the importance of further investigation into methods to improve the performance of GPTs.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.