Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Korean Text Classification Benchmark for Recognizing the Political Intents in Online Newspapers (2311.01712v1)

Published 3 Nov 2023 in cs.CL

Abstract: Many users reading online articles in various magazines may suffer considerable difficulty in distinguishing the implicit intents in texts. In this work, we focus on automatically recognizing the political intents of a given online newspaper by understanding the context of the text. To solve this task, we present a novel Korean text classification dataset that contains various articles. We also provide deep-learning-based text classification baseline models trained on the proposed dataset. Our dataset contains 12,000 news articles that may contain political intentions, from the politics section of six of the most representative newspaper organizations in South Korea. All the text samples are labeled simultaneously in two aspects (1) the level of political orientation and (2) the level of pro-government. To the best of our knowledge, our paper is the most large-scale Korean news dataset that contains long text and addresses multi-task classification problems. We also train recent state-of-the-art (SOTA) LLMs that are based on transformer architectures and demonstrate that the trained models show decent text classification performance. All the codes, datasets, and trained models are available at https://github.com/Kdavid2355/KoPolitic-Benchmark-Dataset.

Summary

We haven't generated a summary for this paper yet.