Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KnowBias: A Novel AI Method to Detect Polarity in Online Content (1905.00724v2)

Published 2 May 2019 in cs.CL

Abstract: We propose a novel training and inference method for detecting political bias in long text content such as newspaper opinion articles. Obtaining long text data and annotations at sufficient scale for training is difficult, but it is relatively easy to extract political polarity from tweets through their authorship; as such, we train on tweets and perform inference on articles. Universal sentence encoders and other existing methods that aim to address this domain-adaptation scenario deliver inaccurate and inconsistent predictions on articles, which we show is due to a difference in opinion concentration between tweets and articles. We propose a two-step classification scheme that utilizes a neutral detector trained on tweets to remove neutral sentences from articles in order to align opinion concentration and therefore improve accuracy on that domain. We evaluate our two-step approach using a variety of test suites, including a set of tweets and long-form articles where annotations were crowd-sourced to decrease label noise, measuring accuracy and Spearman-rho rank correlation. In practice, KnowBias achieves a high accuracy of 86 (rho = 0.65) on these tweets and 75 (rho = 0.69) on long-form articles. While we validate our method on political bias, our scheme is general and can be readily applied to other settings, where there exist such domain mismatches between source and target domains. Our implementation is available for public use at https://knowbias.ml.

Citations (2)

Summary

We haven't generated a summary for this paper yet.