Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing random $r$-orthogonal Latin squares (2311.00992v3)

Published 2 Nov 2023 in cs.DM and math.CO

Abstract: Two Latin squares of order $n$ are $r$-orthogonal if, when superimposed, there are exactly $r$ distinct ordered pairs. The spectrum of all values of $r$ for Latin squares of order $n$ is known. A Latin square $A$ of order $n$ is $r$-self-orthogonal if $A$ and its transpose are $r$-orthogonal. The spectrum of all values of $r$ is known for all orders $n\ne 14$. We develop randomized algorithms for computing pairs of $r$-orthogonal Latin squares of order $n$ and algorithms for computing $r$-self-orthogonal Latin squares of order $n$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. SOLS. https://personal.utdallas.edu/~sxb027100/soft/LS1/ (2023)
  2. Quasigroups and Related Systems 22, 159–164 (2014)
  3. Diskret. Mat. 2, 21–28 (1990)
  4. Belyavskaya, G.B.: r𝑟ritalic_r-orthogonal quasigroups I. Math. Issled. 39, 32–39 (1976)
  5. Belyavskaya, G.B.: r𝑟ritalic_r-orthogonal quasigroups II. Math. Issled. 43, 39–49 (1977)
  6. Belyavskaya, G.B.: r𝑟ritalic_r-orthogonal Latin squares. In: A.K. J. DL enes (ed.) Latin Squares: New Developments, pp. 169–202 (Chapter 6). Elsevier (1992)
  7. In: D. Du, P.M. Pardalos (eds.) Handbook of Combinatorial Optimization, pp. 75–149. Springer (1999)
  8. Colbourn, C.J.: The complexity of completing partial Latin squares. Discret. Appl. Math. 8(1), 25–30 (1984)
  9. In: C.J. Colbourn, E.S. Mahmoodian (eds.) Combinatorics Advances, pp. 49–75. Springer US, Boston, MA (1995)
  10. Journal of Combinatorial Designs 13(1), 1–15 (2005)
  11. Journal of Combinatorial Designs 20(7), 344–361 (2012)
  12. Euler, L.: Recherche sur une nouvelle espéce de quarrés magiques. Leonardi Euleri Opera Omnia 7, 291–392 (1923)
  13. Evans, A.B.: Latin squares without orthogonal mates. Des. Codes Cryptogr. 40(1), 121–130 (2006)
  14. In: C.J. Colbourn, J.H. Dinitz (eds.) The Handbook of Combinatorial Designs, pp. 211–219. Chapman/CRC Press (2007)
  15. Hall, M.: An existence theorem for Latin squares. Bull. Amer. Math. Soc. 51(6), 387–388 (1945)
  16. Hall, P.: On representative of subsets. J. London Math. Soc. 10, 26–30 (1935)
  17. Hankin, P.: Generating random Latin squares (blog). https://blog.paulhankin.net/latinsquares/ (2019)
  18. Journal of Combinatorial Designs 4(6), 405–437 (1996)
  19. Elsevier (2015)
  20. Discret. Math. 288(1-3), 49–60 (2004)
  21. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955)
  22. Mann, H.B.: On orthogonal latin squares. Bull Amer Math Soc 50, 249–257 (1944)
  23. CoRR abs/1610.00139 (2016). URL http://arxiv.org/abs/1610.00139
  24. Des. Codes Cryptogr. 88(2), 391–411 (2020)
  25. Journal of Combinatorial Designs 15(2), 98–119 (2007)
  26. van Rees G.H.J.: Subsquares and transversals in latin squares. Ars Combin 29B, 193–204 (1990)
  27. Wanless, I.M.: Cycle switches in latin squares. Graphs Comb. 20(4), 545–570 (2004)
  28. Des. Codes Cryptogr. 40(1), 131–135 (2006)
  29. Zhang, H.: 25 new r-self-orthogonal Latin squares. Discrete Mathematics 313(17), 1746–1753 (2013)
  30. Discret. Math. 268(1-3), 343–349 (2003)

Summary

We haven't generated a summary for this paper yet.