Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mutually Orthogonal Latin Squares based on Cellular Automata (1906.08249v2)

Published 19 Jun 2019 in cs.DM, math.CO, and nlin.CG

Abstract: We investigate sets of Mutually Orthogonal Latin Squares (MOLS) generated by Cellular Automata (CA) over finite fields. After introducing how a CA defined by a bipermutive local rule of diameter $d$ over an alphabet of $q$ elements generates a Latin square of order $q{d-1}$, we study the conditions under which two CA generate a pair of orthogonal Latin squares. In particular, we prove that the Latin squares induced by two Linear Bipermutive CA (LBCA) over the finite field $\mathbb{F}_q$ are orthogonal if and only if the polynomials associated to their local rules are relatively prime. Next, we enumerate all such pairs of orthogonal Latin squares by counting the pairs of coprime monic polynomials with nonzero constant term and degree $n$ over $\mathbb{F}_q$. Finally, we present a construction of MOLS generated by LBCA with irreducible polynomials and prove the maximality of the resulting sets, as well as a lower bound which is asymptotically close to their actual number.

Citations (22)

Summary

We haven't generated a summary for this paper yet.