Realizing groups as symmetries of infinite translation surfaces (2311.00158v1)
Abstract: We provide a complete classification of groups that can be realized as isometry groups of a translation surface $M$ with non-finitely generated fundamental group and no planar ends. Furthermore, we demonstrate that if $S$ has no non-displaceable subsurfaces and its space of ends is self-similar, then every countable subgroup of $\operatorname{GL}+(2,\mathbb{R})$ can be realized as the Veech group of a translation surface $M$ homeomorphic to $S$. The latter result generalizes and improves upon the previous findings of Przytycki-Valdez-Weitze-Schmith\"{u}sen and Maluendas-Valdez. To prove these results, we adapt ideas from the work of Aougab-Patel-Vlamis, which focused on hyperbolic surfaces, to translation surfaces.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.