Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SumComp: Coding for Digital Over-the-Air Computation via the Ring of Integers (2310.20504v3)

Published 31 Oct 2023 in cs.IT and math.IT

Abstract: Communication and computation are traditionally treated as separate entities, allowing for individual optimizations. However, many applications focus on local information's functionality rather than the information itself. For such cases, harnessing interference for computation in a multiple access channel through digital over-the-air computation can notably increase the computation, as established by the ChannelComp method. However, the coding scheme originally proposed in ChannelComp may suffer from high computational complexity because it is general and is not optimized for specific modulation categories. Therefore, this study considers a specific category of digital modulations for over-the-air computations, QAM and PAM, for which we introduce a novel coding scheme called SumComp. Furthermore, we derive an MSE analysis for SumComp coding in the computation of the arithmetic mean function and establish an upper bound on the MAE for a set of nomographic functions. Simulation results affirm the superior performance of SumComp coding compared to traditional analog over-the-air computation and the original coding in ChannelComp approaches regarding both MSE and MAE over a noisy multiple access channel. Specifically, SumComp coding shows approximately $10$ dB improvements for computing arithmetic and geometric mean on the normalized MSE for low noise scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. H. Tataria et al., “6G wireless systems: Vision, requirements, challenges, insights, and opportunities,” Proc. IEEE, vol. 109, no. 7, pp. 1166–1199, 2021.
  2. H. Hellström et al., “Wireless for machine learning: A survey,” Foundations and Trends® in Signal Processing, vol. 15, no. 4, pp. 290–399, 2022.
  3. S. Daei et al., “Blind asynchronous goal-oriented detection for massive connectivity,” arXiv preprint arXiv:2306.12228, 2023.
  4. M. Goldenbaum et al., “Harnessing interference for analog function computation in wireless sensor networks,” IEEE Trans. Sig. Proc., vol. 61, no. 20, pp. 4893–4906, 2013.
  5. B. Nazer et al., “Computation over multiple-access channels,” IEEE Trans. Info. Theo., vol. 53, no. 10, pp. 3498–3516, 2007.
  6. O. Abari et al., “Over-the-air function computation in sensor networks,” arXiv preprint arXiv:1612.02307, 2016.
  7. A. Sahin et al., “A survey on over-the-air computation,” IEEE Communications Surveys & Tutorials, pp. 1–1, 2023.
  8. S. Razavikia et al., “Computing functions over-the-air using digital modulations,” in IEEE Inter. Conf. on Commun., 2023, pp. 5780–5786.
  9. M. Gastpar, “Uncoded transmission is exactly optimal for a simple Gaussian “sensor” network,” IEEE Trans. Info. Theo., vol. 54, no. 11, pp. 5247–5251, 2008.
  10. R. Soundararajan et al., “Communicating linear functions of correlated Gaussian sources over a MAC,” IEEE Trans. Info. Theo., vol. 58, no. 3, pp. 1853–1860, 2012.
  11. A. B. Wagner et al., “Rate region of the quadratic Gaussian two-encoder source-coding problem,” IEEE Trans. Info. Theo., vol. 54, no. 5, pp. 1938–1961, 2008.
  12. L. Chen et al., “Over-the-air computation for IoT networks: Computing multiple functions with antenna arrays,” IEEE Internet of Things J., vol. 5, no. 6, pp. 5296–5306, 2018.
  13. M. Goldenbaum et al., “Robust analog function computation via wireless multiple-access channels,” IEEE Trans. on Commun., vol. 61, no. 9, pp. 3863–3877, 2013.
  14. K. Yang et al., “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, 2020.
  15. M. M. Amiri et al., “Federated learning over wireless fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557, 2020.
  16. B. Nazer et al., “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. on Info. Theo., vol. 57, no. 10, pp. 6463–6486, 2011.
  17. M. Goldenbaum et al., “Nomographic functions: Efficient computation in clustered Gaussian sensor networks,” IEEE Trans. Wireless Commun., vol. 14, no. 4, pp. 2093–2105, 2014.
  18. A. Şahin et al., “Over-the-air computation over balanced numerals,” in IEEE Globecom Workshops, 2022.
  19. G. Zhu et al., “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, 2019.
  20. ——, “One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 2120–2135, 2020.
  21. A. Şahin, “Distributed learning over a wireless network with non-coherent majority vote computation,” IEEE Trans. Wireless Commun., 2023.
  22. X. Zhao et al., “Broadband digital over-the-air computation for asynchronous federated edge learning,” in ICC, 2022, pp. 5359–5364.
  23. J. Bernstein et al., “signSGD: Compressed optimisation for non-convex problems,” in Int. Conf. Mach. Learn.   PMLR, 2018, pp. 560–569.
  24. M. Tang et al., “Radix-partition-based over-the-air aggregation and low-complexity state estimation for IoT systems over wireless fading channels,” IEEE Trans. Sig. Proc., vol. 70, pp. 1464–1477, 2022.
  25. M. Goldenbaum et al., “Reliable computation of Nomographic functions over Gaussian multiple-access channels,” in ICASSP, 2013, pp. 4814–4818.
  26. S. Razavikia et al., “ChannelComp: A general method for computation by communications,” IEEE Trans. on Commun., vol. 72, no. 2, pp. 692–706, 2024.
  27. ——, “Blind asynchronous over-the-air federated edge learning,” in IEEE Globecom workshop, 2022, pp. 1834–1839.
  28. H. Hellström et al., “Optimal receive filter design for misaligned over-the-air computation,” arXiv preprint arXiv:2309.16033, 2023.
  29. X. Cao et al., “Optimal power control for over-the-air computation,” in IEEE Global Commun. Conf., 2019, pp. 1–6.
  30. D. Sprecher, “A representation theorem for continuous functions of several variables,” Proceedings of the American Mathematical Society, vol. 16, no. 2, pp. 200–203, 1965.
  31. R. C. Buck, “Approximate complexity and functional representation,” Wisconsin Univ. Madison Mathematics Research Center, Tech. Rep., 1976.
  32. D. A. Sprecher, “On the structure of continuous functions of several variables,” Trans. of the American Mathematical Society, vol. 115, pp. 340–355, 1965.
  33. K. Huber, “Codes over Gaussian integers,” IEEE Trans. on Info. Theory, vol. 40, no. 1, pp. 207–216, 1994.
  34. F. Hekland et al., “Shannon-kotel-nikov mappings in joint source-channel coding,” IEEE Transactions on Communications, vol. 57, no. 1, pp. 94–105, 2009.
  35. N. Aronszajn et al., “Extension of uniformly continuous transformations and hyperconvex metric spaces,” Pacific Journal of Mathematics, 1956.
  36. Z.-Q. Luo et al., “Semidefinite relaxation of quadratic optimization problems,” IEEE Sig. Proc. Mag., vol. 27, no. 3, pp. 20–34, 2010.
  37. D. E. Knuth, “Sorting and searching,” The Art of Computer Programmimg, vol. 422, pp. 559–563, 1973.
  38. E. J. McShane, “Jensen’s inequality,” Ph.D. dissertation, University of Chicago, 1937.
  39. G. B. Folland, “Remainder estimates in Taylor’s theorem,” The American Mathematical Monthly, vol. 97, no. 3, pp. 233–235, 1990.
  40. F. K. Amenyou, “Properties and computation of the inverse of the gamma function,” Ph.D. dissertation, The University of Western Ontario, 2018.
  41. R. M. Corless et al., “On the Lambert W function,” Advances in Computational mathematics, vol. 5, pp. 329–359, 1996.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com