Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Digital Over-the-Air Computation: Achieving High Reliability via Bit-Slicing (2404.07121v1)

Published 10 Apr 2024 in cs.IT, eess.SP, and math.IT

Abstract: 6G mobile networks aim to realize ubiquitous intelligence at the network edge via distributed learning, sensing, and data analytics. Their common operation is to aggregate high-dimensional data, which causes a communication bottleneck that cannot be resolved using traditional orthogonal multi-access schemes. A promising solution, called over-the-air computation (AirComp), exploits channels' waveform superposition property to enable simultaneous access, thereby overcoming the bottleneck. Nevertheless, its reliance on uncoded linear analog modulation exposes data to perturbation by noise and interference. Hence, the traditional analog AirComp falls short of meeting the high-reliability requirement for 6G. Overcoming the limitation of analog AirComp motivates this work, which focuses on developing a framework for digital AirComp. The proposed framework features digital modulation of each data value, integrated with the bit-slicing technique to allocate its bits to multiple symbols, thereby increasing the AirComp reliability. To optimally detect the aggregated digital symbols, we derive the optimal maximum a posteriori detector that is shown to outperform the traditional maximum likelihood detector. Furthermore, a comparative performance analysis of digital AirComp with respect to its analog counterpart with repetition coding is conducted to quantify the practical signal-to-noise ratio (SNR) regime favoring the proposed scheme. On the other hand, digital AirComp is enhanced by further development to feature awareness of heterogeneous bit importance levels and its exploitation in channel adaptation. Lastly, simulation results demonstrate the achivability of substantial reliability improvement of digital AirComp over its analog counterpart given the same channel uses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. E. Peltonen et al., “6g white paper on edge intelligence,” 2020. [Online]. Available: https://arxiv.org/abs/2004.14850
  2. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
  3. W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, and C. Miao, “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Commun. Surv. Tutorials, vol. 22, no. 3, pp. 2031–2063, Apr. 2020.
  4. L. Xie, S. Song, and K. B. Letaief, “Networked sensing with ai-empowered interference management: Exploiting macro-diversity and array gain in perceptive mobile networks,” IEEE J. on Select. Areas Commun., vol. 41, no. 12, pp. 3863–3877, Dec. 2023.
  5. X. Chen, E. G. Larsson, and K. Huang, “On-the-fly communication-and-computing for distributed tensor decomposition over mimo channels,” IEEE Trans. Signal Process., vol. 71, pp. 4192–4206, Nov. 2023.
  6. G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for wireless data aggregation in massive iot,” IEEE Wireless Commun., vol. 28, no. 4, pp. 57–65, Aug. 2021.
  7. B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference through structured codes,” IEEE Trans. on Inf. Theory, vol. 57, no. 10, pp. 6463–6486, Oct. 2011.
  8. O. Abari, H. Rahul, and D. Katabi, “Over-the-air function computation in sensor networks,” 2016. [Online]. Available: https://arxiv.org/abs/1612.02307
  9. G. Zhu and K. Huang, “Mimo over-the-air computation for high-mobility multimodal sensing,” IEEE Internet Things J., vol. 6, no. 4, pp. 6089–6103, Aug. 2019.
  10. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, “Guest editorial special issue on distributed learning over wireless edge networks—part ii,” IEEE J. on Select. Areas Commun., vol. 40, no. 2, pp. 445–448, Feb. 2022.
  11. M. Mohammadi Amiri and D. Gündüz, “Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal Process., vol. 68, pp. 2155–2169, Mar. 2020.
  12. K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3, pp. 2022–2035, Mar. 2020.
  13. X. Cao, G. Zhu, J. Xu, Z. Wang, and S. Cui, “Optimized power control design for over-the-air federated edge learning,” IEEE J. Select. Areas Commun., vol. 40, no. 1, pp. 342–358, Jan. 2022.
  14. N. Zhang, M. Tao, J. Wang, and S. Shao, “Coded over-the-air computation for model aggregation in federated learning,” IEEE Commun. Lett., vol. 27, no. 1, pp. 160–164, Jan. 2023.
  15. Z. Zhang, G. Zhu, R. Wang, V. K. N. Lau, and K. Huang, “Turning channel noise into an accelerator for over-the-air principal component analysis,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 7926–7941, Oct. 2022.
  16. T. Sery, N. Shlezinger, K. Cohen, and Y. C. Eldar, “Over-the-air federated learning from heterogeneous data,” IEEE Trans. Signal Process., vol. 69, pp. 3796–3811, Jun. 2021.
  17. Z. Wang, K. Huang, and Y. C. Eldar, “Spectrum breathing: Protecting over-the-air federated learning against interference,” IEEE Trans. Wireless Commun., Early Access, 2024.
  18. S. F. Yilmaz, B. Hasırcıoğlu, and D. Gündüz, “Over-the-air ensemble inference with model privacy,” in 2022 IEEE Int. Symp. Inf. Theory (ISIT), Espoo, Finland, Jun. 2022, pp. 1265–1270.
  19. Z. Liu, Q. Lan, A. E. Kalør, P. Popovski, and K. Huang, “Over-the-air multi-view pooling for distributed sensing,” IEEE Trans. Wireless Commun., Early Access, 2023.
  20. Z. Lin, Y. Gong, and K. Huang, “Distributed over-the-air computing for fast distributed optimization: Beamforming design and convergence analysis,” IEEE J. Select. Areas Commun., vol. 41, no. 1, pp. 274–287, Jan. 2023.
  21. G. Zhu, Y. Du, D. Gunduz, and K. Huang, “One-bit over-the-air aggregation for communication-efficient federated edge learning: Design and convergence analysis,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 2120–2135, Mar. 2021.
  22. R. Jiang and S. Zhou, “Cluster-based cooperative digital over-the-air aggregation for wireless federated edge learning,” in 2020 IEEE/CIC Int. Conf. Commun. China (ICCC), Chongqing, China, Aug. 2020, pp. 887–892.
  23. L. You, X. Zhao, R. Cao, Y. Shao, and L. Fu, “Broadband digital over-the-air computation for wireless federated edge learning,” IEEE Trans. Mob. Comput., vol. 23, no. 5, pp. 5212–5228, May 2024.
  24. S. Razavikia, J. M. B. Da Silva, and C. Fischione, “Channelcomp: A general method for computation by communications,” IEEE Trans. Commun., Early Access, 2023.
  25. S. Razavikia, J. M. B. D. S. Júnior, and C. Fischione, “Sumcomp: Coding for digital over-the-air computation via the ring of integers,” 2023. [Online]. Available: https://arxiv.org/abs/2310.20504
  26. C. Dunn and M. Sandler, “Efficient linearisation of sigma-delta modulators using single-bit dither,” Electron. Lett., vol. 31, no. 12, pp. 941–941, Jun. 1995.
  27. G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for low-latency federated edge learning,” IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 491–506, Jan. 2020.
  28. R. Gray and D. Neuhoff, “Quantization,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2325–2383, Oct. 1998.
  29. Steffen Eger, “Stirling’s approximation for central extended binomial coefficients,” Amer. Math. Monthly, vol. 121, no. 4, pp. 344–349, Apr. 2014.
  30. I. Mezo and A. Baricz, “On the generalization of the lambert w function,” Trans. Amer. Math. Soc., vol. 369, no. 11, pp. 7917–7934, Apr. 2017.
  31. J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in Proc. Adv. Neural Inform. Process. Syst., Miami, FL, Jun. 2009, pp. 248–255.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com