Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cosmological simulations of mixed ultralight dark matter (2310.20000v2)

Published 30 Oct 2023 in astro-ph.CO

Abstract: The era of precision cosmology allows us to test the composition of the dark matter. Mixed ultralight or fuzzy dark matter (FDM) is a cosmological model with dark matter composed of a combination of particles of mass $m\leq 10{-20}\;\mathrm{eV}$, with an astrophysical de Broglie wavelength, and particles with a negligible wavelength sharing the properties of cold dark matter (CDM). In this work, we simulate cosmological volumes with a dark matter wave function for the ultralight component coupled gravitationally to CDM particles. We investigate the impact of a mixture of CDM and FDM in various proportions $(0\%,\;1\%,\;10\%,\;50\%,\;100\%)$ and for ultralight particle masses ranging over five orders of magnitude $(2.5\times 10{-25}\;\mathrm{eV}-2.5\times 10{-21}\;\mathrm{eV})$. To track the evolution of density perturbations in the non-linear regime, we adapt the simulation code AxioNyx to solve the CDM dynamics coupled to a FDM wave function obeying the Schr\"odinger-Poisson equations. We obtain the non-linear power spectrum and study the impact of the wave effects on the growth of structure on different scales. We confirm that the steady-state solution of the Schr\"odinger-Poisson system holds at the center of halos in the presence of a CDM component when it composes $50\%$ or less of the dark matter but find no stable density core when the FDM accounts for $10\%$ or less of the dark matter. We implement a modified friends-of-friends halo finder and find good agreement between the observed halo abundance and the predictions from the adapted halo model axionHMCode.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. W. Hu, R. Barkana, and A. Gruzinov, Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles, Phys. Rev. Lett.  85, 1158 (2000), arXiv:astro-ph/0003365 [astro-ph] .
  2. J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Physics Letters B 120, 127 (1983).
  3. L. F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Physics Letters B 120, 133 (1983).
  4. M. Dine and W. Fischler, The not-so-harmless axion, Physics Letters B 120, 137 (1983).
  5. Z. G. Berezhiani, A. S. Sakharov, and M. Y. Khlopov, Primordial background of cosmological axions., Soviet Journal of Nuclear Physics 55, 1063 (1992).
  6. J. E. Kim and D. J. E. Marsh, An ultralight pseudoscalar boson, Phys. Rev. D 93, 025027 (2016), arXiv:1510.01701 [hep-ph] .
  7. H. Davoudiasl and C. W. Murphy, Fuzzy Dark Matter from Infrared Confining Dynamics, Phys. Rev. Lett.  118, 141801 (2017), arXiv:1701.01136 [hep-ph] .
  8. M. Nori and M. Baldi, AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models, Monthly Notices of the Royal Astronomical Society 478, 3935 (2018), arXiv:1801.08144 [astro-ph.CO] .
  9. J. Veltmaat, J. C. Niemeyer, and B. Schwabe, Formation and structure of ultralight bosonic dark matter halos, Phys. Rev. D 98, 043509 (2018), arXiv:1804.09647 [astro-ph.CO] .
  10. P. F. Hopkins, A stable finite-volume method for scalar field dark matter, Monthly Notices of the Royal Astronomical Society 489, 2367 (2019), arXiv:1811.05583 [astro-ph.CO] .
  11. R. Hložek, D. J. E. Marsh, and D. Grin, Using the full power of the cosmic microwave background to probe axion dark matter, Monthly Notices of the Royal Astronomical Society 476, 3063 (2018), arXiv:1708.05681 [astro-ph.CO] .
  12. K. K. Rogers and H. V. Peiris, Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest, Phys. Rev. Lett.  126, 071302 (2021), arXiv:2007.12705 [astro-ph.CO] .
  13. E. Calabrese and D. N. Spergel, Ultra-light dark matter in ultra-faint dwarf galaxies, Monthly Notices of the Royal Astronomical Society 460, 4397 (2016), arXiv:1603.07321 [astro-ph.CO] .
  14. M. Safarzadeh and D. N. Spergel, Ultra-light Dark Matter Is Incompatible with the Milky Way’s Dwarf Satellites, Astrophys. J.  893, 21 (2020), arXiv:1906.11848 [astro-ph.CO] .
  15. K. Schutz, Subhalo mass function and ultralight bosonic dark matter, Physical Review D 101, 123026 (2020), arXiv:2001.05503 [astro-ph.CO] .
  16. A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Physical Review D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  17. M. J. Stott and D. J. E. Marsh, Black hole spin constraints on the mass spectrum and number of axionlike fields, Physical Review D 98, 083006 (2018), arXiv:1805.02016 [hep-ph] .
  18. D. J. Marsh, Axion cosmology (2016).
  19. L. Hui et al., Ultralight scalars as cosmological dark matter, Physical Review D 95, 10.1103/PhysRevD.95.043541 (2017).
  20. L. M. Widrow and N. Kaiser, Using the Schrodinger equation to simulate collisionless matter, Astrophys. J. 416, L71 (1993).
  21. H.-Y. Schive, T. Chiueh, and T. Broadhurst, Cosmic structure as the quantum interference of a coherent dark wave, Nature Physics 10, 496 (2014), arXiv:1406.6586 [astro-ph.GA] .
  22. S. May and V. Springel, The halo mass function and filaments in full cosmological simulations with fuzzy dark matter, Monthly Notices of the Royal Astronomical Society 524, 4256 (2023), arXiv:2209.14886 [astro-ph.CO] .
  23. X. Li, L. Hui, and G. L. Bryan, Numerical and perturbative computations of the fuzzy dark matter model, Phys. Rev. D 99, 063509 (2019), arXiv:1810.01915 [astro-ph.CO] .
  24. B. Schwabe, J. C. Niemeyer, and J. F. Engels, Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, Phys. Rev. D 94, 043513 (2016), arXiv:1606.05151 [astro-ph.CO] .
  25. M. Mina, D. F. Mota, and H. A. Winther, SCALAR: an AMR code to simulate axion-like dark matter models, Astronomy and Astrophysics 641, A107 (2020), arXiv:1906.12160 [physics.comp-ph] .
  26. N. Glennon, N. Musoke, and C. Prescod-Weinstein, Simulations of multifield ultralight axionlike dark matter, Phys. Rev. D 107, 063520 (2023), arXiv:2302.04302 [astro-ph.CO] .
  27. M. Crocce, S. Pueblas, and R. Scoccimarro, Transients from initial conditions in cosmological simulations, Monthly Notices of the Royal Astronomical Society 373, 369 (2006), arXiv:astro-ph/0606505 [astro-ph] .
  28. J.-C. Hwang and H. Noh, Axion as a cold dark matter candidate, Physics Letters B 680, 1 (2009), arXiv:0902.4738 [astro-ph.CO] .
  29. C.-G. Park, J.-c. Hwang, and H. Noh, Axion as a cold dark matter candidate: Low-mass case, Phys. Rev. D 86, 083535 (2012), arXiv:1207.3124 [astro-ph.CO] .
  30. O. Hahn and T. Abel, Multi-scale initial conditions for cosmological simulations, Monthly Notices of the Royal Astronomical Society 415, 2101 (2011), arXiv:1103.6031 [astro-ph.CO] .
  31. M. I. Khlopov, B. A. Malomed, and I. B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Monthly Notices of the Royal Astronomical Society 215, 575 (1985).
  32. S. May and V. Springel, Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the non-linear dynamics, Monthly Notices of the Royal Astronomical Society 506, 2603 (2021), arXiv:2101.01828 [astro-ph.CO] .
  33. F. S. Guzmán and L. A. Ureña-López, Evolution of the Schrödinger-Newton system for a self-gravitating scalar field, Phys. Rev. D 69, 124033 (2004), arXiv:gr-qc/0404014 [gr-qc] .
  34. J. Veltmaat, B. Schwabe, and J. C. Niemeyer, Baryon-driven growth of solitonic cores in fuzzy dark matter halos, Phys. Rev. D 101, 083518 (2020), arXiv:1911.09614 [astro-ph.CO] .
  35. J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter Halos, Astrophys. J.  462, 563 (1996), arXiv:astro-ph/9508025 [astro-ph] .
  36. G. L. Bryan and M. L. Norman, Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons, Astrophys. J.  495, 80 (1998), arXiv:astro-ph/9710107 [astro-ph] .
  37. S. M. L. Vogt, D. J. E. Marsh, and A. Laguë, Improved mixed dark matter halo model for ultralight axions, Phys. Rev. D 107, 063526 (2023), arXiv:2209.13445 [astro-ph.CO] .
  38. S. G. Murray, C. Power, and A. S. G. Robotham, HMFcalc: An online tool for calculating dark matter halo mass functions, Astronomy and Computing 3, 23 (2013), arXiv:1306.6721 [astro-ph.CO] .
  39. J. Dubinski and R. G. Carlberg, The Structure of Cold Dark Matter Halos, Astrophys. J.  378, 496 (1991).
  40. D. Campbell, Inertia tensors, https://github.com/duncandc/inertia_tensors (2019).
  41. D. Campbell and F. Lanusse, Rotations, https://github.com/duncandc/rotations (2020).
  42. M. Franx, G. Illingworth, and T. de Zeeuw, The Ordered Nature of Elliptical Galaxies: Implications for Their Intrinsic Angular Momenta and Shapes, Astrophys. J.  383, 112 (1991).
  43. M. D. Schneider, C. S. Frenk, and S. Cole, The shapes and alignments of dark matter halos, Journal of Cosmology and Astroparticle Physics 2012, 030 (2012), arXiv:1111.5616 [astro-ph.CO] .
  44. C. Loken et al., SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre, in Journal of Physics Conference Series, Journal of Physics Conference Series, Vol. 256 (2010) p. 012026.
  45. M. Ponce et al., Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer, arXiv e-prints , arXiv:1907.13600 (2019), arXiv:1907.13600 [cs.DC] .
  46. D. J. E. Marsh and A.-R. Pop, Axion dark matter, solitons and the cusp-core problem, Monthly Notices of the Royal Astronomical Society 451, 2479 (2015), arXiv:1502.03456 [astro-ph.CO] .
  47. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations, arXiv e-prints , arXiv:1711.10561 (2017), arXiv:1711.10561 [cs.AI] .
  48. P. Virtanen and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).
  49. D. Blas, M. Garny, and T. Konstandin, On the non-linear scale of cosmological perturbation theory, Journal of Cosmology and Astroparticle Physics 2013, 024 (2013), arXiv:1304.1546 [astro-ph.CO] .
Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.