Cosmological simulations of mixed ultralight dark matter (2310.20000v2)
Abstract: The era of precision cosmology allows us to test the composition of the dark matter. Mixed ultralight or fuzzy dark matter (FDM) is a cosmological model with dark matter composed of a combination of particles of mass $m\leq 10{-20}\;\mathrm{eV}$, with an astrophysical de Broglie wavelength, and particles with a negligible wavelength sharing the properties of cold dark matter (CDM). In this work, we simulate cosmological volumes with a dark matter wave function for the ultralight component coupled gravitationally to CDM particles. We investigate the impact of a mixture of CDM and FDM in various proportions $(0\%,\;1\%,\;10\%,\;50\%,\;100\%)$ and for ultralight particle masses ranging over five orders of magnitude $(2.5\times 10{-25}\;\mathrm{eV}-2.5\times 10{-21}\;\mathrm{eV})$. To track the evolution of density perturbations in the non-linear regime, we adapt the simulation code AxioNyx to solve the CDM dynamics coupled to a FDM wave function obeying the Schr\"odinger-Poisson equations. We obtain the non-linear power spectrum and study the impact of the wave effects on the growth of structure on different scales. We confirm that the steady-state solution of the Schr\"odinger-Poisson system holds at the center of halos in the presence of a CDM component when it composes $50\%$ or less of the dark matter but find no stable density core when the FDM accounts for $10\%$ or less of the dark matter. We implement a modified friends-of-friends halo finder and find good agreement between the observed halo abundance and the predictions from the adapted halo model axionHMCode.
- W. Hu, R. Barkana, and A. Gruzinov, Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles, Phys. Rev. Lett. 85, 1158 (2000), arXiv:astro-ph/0003365 [astro-ph] .
- J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the invisible axion, Physics Letters B 120, 127 (1983).
- L. F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Physics Letters B 120, 133 (1983).
- M. Dine and W. Fischler, The not-so-harmless axion, Physics Letters B 120, 137 (1983).
- Z. G. Berezhiani, A. S. Sakharov, and M. Y. Khlopov, Primordial background of cosmological axions., Soviet Journal of Nuclear Physics 55, 1063 (1992).
- J. E. Kim and D. J. E. Marsh, An ultralight pseudoscalar boson, Phys. Rev. D 93, 025027 (2016), arXiv:1510.01701 [hep-ph] .
- H. Davoudiasl and C. W. Murphy, Fuzzy Dark Matter from Infrared Confining Dynamics, Phys. Rev. Lett. 118, 141801 (2017), arXiv:1701.01136 [hep-ph] .
- M. Nori and M. Baldi, AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models, Monthly Notices of the Royal Astronomical Society 478, 3935 (2018), arXiv:1801.08144 [astro-ph.CO] .
- J. Veltmaat, J. C. Niemeyer, and B. Schwabe, Formation and structure of ultralight bosonic dark matter halos, Phys. Rev. D 98, 043509 (2018), arXiv:1804.09647 [astro-ph.CO] .
- P. F. Hopkins, A stable finite-volume method for scalar field dark matter, Monthly Notices of the Royal Astronomical Society 489, 2367 (2019), arXiv:1811.05583 [astro-ph.CO] .
- R. Hložek, D. J. E. Marsh, and D. Grin, Using the full power of the cosmic microwave background to probe axion dark matter, Monthly Notices of the Royal Astronomical Society 476, 3063 (2018), arXiv:1708.05681 [astro-ph.CO] .
- K. K. Rogers and H. V. Peiris, Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest, Phys. Rev. Lett. 126, 071302 (2021), arXiv:2007.12705 [astro-ph.CO] .
- E. Calabrese and D. N. Spergel, Ultra-light dark matter in ultra-faint dwarf galaxies, Monthly Notices of the Royal Astronomical Society 460, 4397 (2016), arXiv:1603.07321 [astro-ph.CO] .
- M. Safarzadeh and D. N. Spergel, Ultra-light Dark Matter Is Incompatible with the Milky Way’s Dwarf Satellites, Astrophys. J. 893, 21 (2020), arXiv:1906.11848 [astro-ph.CO] .
- K. Schutz, Subhalo mass function and ultralight bosonic dark matter, Physical Review D 101, 123026 (2020), arXiv:2001.05503 [astro-ph.CO] .
- A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Physical Review D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
- M. J. Stott and D. J. E. Marsh, Black hole spin constraints on the mass spectrum and number of axionlike fields, Physical Review D 98, 083006 (2018), arXiv:1805.02016 [hep-ph] .
- D. J. Marsh, Axion cosmology (2016).
- L. Hui et al., Ultralight scalars as cosmological dark matter, Physical Review D 95, 10.1103/PhysRevD.95.043541 (2017).
- L. M. Widrow and N. Kaiser, Using the Schrodinger equation to simulate collisionless matter, Astrophys. J. 416, L71 (1993).
- H.-Y. Schive, T. Chiueh, and T. Broadhurst, Cosmic structure as the quantum interference of a coherent dark wave, Nature Physics 10, 496 (2014), arXiv:1406.6586 [astro-ph.GA] .
- S. May and V. Springel, The halo mass function and filaments in full cosmological simulations with fuzzy dark matter, Monthly Notices of the Royal Astronomical Society 524, 4256 (2023), arXiv:2209.14886 [astro-ph.CO] .
- X. Li, L. Hui, and G. L. Bryan, Numerical and perturbative computations of the fuzzy dark matter model, Phys. Rev. D 99, 063509 (2019), arXiv:1810.01915 [astro-ph.CO] .
- B. Schwabe, J. C. Niemeyer, and J. F. Engels, Simulations of solitonic core mergers in ultralight axion dark matter cosmologies, Phys. Rev. D 94, 043513 (2016), arXiv:1606.05151 [astro-ph.CO] .
- M. Mina, D. F. Mota, and H. A. Winther, SCALAR: an AMR code to simulate axion-like dark matter models, Astronomy and Astrophysics 641, A107 (2020), arXiv:1906.12160 [physics.comp-ph] .
- N. Glennon, N. Musoke, and C. Prescod-Weinstein, Simulations of multifield ultralight axionlike dark matter, Phys. Rev. D 107, 063520 (2023), arXiv:2302.04302 [astro-ph.CO] .
- M. Crocce, S. Pueblas, and R. Scoccimarro, Transients from initial conditions in cosmological simulations, Monthly Notices of the Royal Astronomical Society 373, 369 (2006), arXiv:astro-ph/0606505 [astro-ph] .
- J.-C. Hwang and H. Noh, Axion as a cold dark matter candidate, Physics Letters B 680, 1 (2009), arXiv:0902.4738 [astro-ph.CO] .
- C.-G. Park, J.-c. Hwang, and H. Noh, Axion as a cold dark matter candidate: Low-mass case, Phys. Rev. D 86, 083535 (2012), arXiv:1207.3124 [astro-ph.CO] .
- O. Hahn and T. Abel, Multi-scale initial conditions for cosmological simulations, Monthly Notices of the Royal Astronomical Society 415, 2101 (2011), arXiv:1103.6031 [astro-ph.CO] .
- M. I. Khlopov, B. A. Malomed, and I. B. Zeldovich, Gravitational instability of scalar fields and formation of primordial black holes, Monthly Notices of the Royal Astronomical Society 215, 575 (1985).
- S. May and V. Springel, Structure formation in large-volume cosmological simulations of fuzzy dark matter: impact of the non-linear dynamics, Monthly Notices of the Royal Astronomical Society 506, 2603 (2021), arXiv:2101.01828 [astro-ph.CO] .
- F. S. Guzmán and L. A. Ureña-López, Evolution of the Schrödinger-Newton system for a self-gravitating scalar field, Phys. Rev. D 69, 124033 (2004), arXiv:gr-qc/0404014 [gr-qc] .
- J. Veltmaat, B. Schwabe, and J. C. Niemeyer, Baryon-driven growth of solitonic cores in fuzzy dark matter halos, Phys. Rev. D 101, 083518 (2020), arXiv:1911.09614 [astro-ph.CO] .
- J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter Halos, Astrophys. J. 462, 563 (1996), arXiv:astro-ph/9508025 [astro-ph] .
- G. L. Bryan and M. L. Norman, Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons, Astrophys. J. 495, 80 (1998), arXiv:astro-ph/9710107 [astro-ph] .
- S. M. L. Vogt, D. J. E. Marsh, and A. Laguë, Improved mixed dark matter halo model for ultralight axions, Phys. Rev. D 107, 063526 (2023), arXiv:2209.13445 [astro-ph.CO] .
- S. G. Murray, C. Power, and A. S. G. Robotham, HMFcalc: An online tool for calculating dark matter halo mass functions, Astronomy and Computing 3, 23 (2013), arXiv:1306.6721 [astro-ph.CO] .
- J. Dubinski and R. G. Carlberg, The Structure of Cold Dark Matter Halos, Astrophys. J. 378, 496 (1991).
- D. Campbell, Inertia tensors, https://github.com/duncandc/inertia_tensors (2019).
- D. Campbell and F. Lanusse, Rotations, https://github.com/duncandc/rotations (2020).
- M. Franx, G. Illingworth, and T. de Zeeuw, The Ordered Nature of Elliptical Galaxies: Implications for Their Intrinsic Angular Momenta and Shapes, Astrophys. J. 383, 112 (1991).
- M. D. Schneider, C. S. Frenk, and S. Cole, The shapes and alignments of dark matter halos, Journal of Cosmology and Astroparticle Physics 2012, 030 (2012), arXiv:1111.5616 [astro-ph.CO] .
- C. Loken et al., SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre, in Journal of Physics Conference Series, Journal of Physics Conference Series, Vol. 256 (2010) p. 012026.
- M. Ponce et al., Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer, arXiv e-prints , arXiv:1907.13600 (2019), arXiv:1907.13600 [cs.DC] .
- D. J. E. Marsh and A.-R. Pop, Axion dark matter, solitons and the cusp-core problem, Monthly Notices of the Royal Astronomical Society 451, 2479 (2015), arXiv:1502.03456 [astro-ph.CO] .
- M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations, arXiv e-prints , arXiv:1711.10561 (2017), arXiv:1711.10561 [cs.AI] .
- P. Virtanen and SciPy 1.0 Contributors, SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261 (2020).
- D. Blas, M. Garny, and T. Konstandin, On the non-linear scale of cosmological perturbation theory, Journal of Cosmology and Astroparticle Physics 2013, 024 (2013), arXiv:1304.1546 [astro-ph.CO] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.