Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning Regularization for the Minimum Volume Formula of Toric Calabi-Yau 3-folds (2310.19276v1)

Published 30 Oct 2023 in hep-th, cs.LG, math-ph, math.AG, and math.MP

Abstract: We present a collection of explicit formulas for the minimum volume of Sasaki-Einstein 5-manifolds. The cone over these 5-manifolds is a toric Calabi-Yau 3-fold. These toric Calabi-Yau 3-folds are associated with an infinite class of 4d N=1 supersymmetric gauge theories, which are realized as worldvolume theories of D3-branes probing the toric Calabi-Yau 3-folds. Under the AdS/CFT correspondence, the minimum volume of the Sasaki-Einstein base is inversely proportional to the central charge of the corresponding 4d N=1 superconformal field theories. The presented formulas for the minimum volume are in terms of geometric invariants of the toric Calabi-Yau 3-folds. These explicit results are derived by implementing machine learning regularization techniques that advance beyond previous applications of machine learning for determining the minimum volume. Moreover, the use of machine learning regularization allows us to present interpretable and explainable formulas for the minimum volume. Our work confirms that, even for extensive sets of toric Calabi-Yau 3-folds, the proposed formulas approximate the minimum volume with remarkable accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.