Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calabi-Yau Four/Five/Six-folds as $\mathbb{P}^n_\textbf{w}$ Hypersurfaces: Machine Learning, Approximation, and Generation (2311.17146v2)

Published 28 Nov 2023 in hep-th, math.AG, and stat.ML

Abstract: Calabi-Yau four-folds may be constructed as hypersurfaces in weighted projective spaces of complex dimension 5 defined via weight systems of 6 weights. In this work, neural networks were implemented to learn the Calabi-Yau Hodge numbers from the weight systems, where gradient saliency and symbolic regression then inspired a truncation of the Landau-Ginzburg model formula for the Hodge numbers of any dimensional Calabi-Yau constructed in this way. The approximation always provides a tight lower bound, is shown to be dramatically quicker to compute (with compute times reduced by up to four orders of magnitude), and gives remarkably accurate results for systems with large weights. Additionally, complementary datasets of weight systems satisfying the necessary but insufficient conditions for transversality were constructed, including considerations of the interior point, reflexivity, and intradivisibility properties. Overall producing a classification of this weight system landscape, further confirmed with machine learning methods. Using the knowledge of this classification, and the properties of the presented approximation, a novel dataset of transverse weight systems consisting of 7 weights was generated for a sum of weights $\leq 200$; producing a new database of Calabi-Yau five-folds, with their respective topological properties computed. Further to this an equivalent database of candidate Calabi-Yau six-folds was generated with approximated Hodge numbers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (123)
  1. E. Calabi, “The space of Kähler metrics,” Proc. Internat. Congress Math. Amsterdam 2 (1954) 206–207. Archived from the original on 2011-07-17.
  2. S.-T. Yau, “On the Ricci curvature of a compact Kahler manifold and the complex Monge-Ampere equation, I*,” Communications on Pure and Applied Mathematics 31 (1978) 339–411.
  3. P. Candelas, G. T. Horowitz, A. Strominger, and E. Witten, “Vacuum configurations for superstrings,” Nucl. Phys. B 258 (1985) 46–74.
  4. Lecture Notes in Mathematics. 5, 2021. arXiv:1812.02893 [hep-th].
  5. M. Kreuzer and H. Skarke, “Complete classification of reflexive polyhedra in four-dimensions,” Adv. Theor. Math. Phys. 4 (2000) 1209–1230, arXiv:hep-th/0002240.
  6. R. Altman, J. Gray, Y.-H. He, V. Jejjala, and B. D. Nelson, “A Calabi-Yau Database: Threefolds Constructed from the Kreuzer-Skarke List,” JHEP 02 (2015) 158, arXiv:1411.1418 [hep-th].
  7. M. Demirtas, L. McAllister, and A. Rios-Tascon, “Bounding the Kreuzer-Skarke Landscape,” Fortsch. Phys. 68 (2020) 2000086, arXiv:2008.01730 [hep-th].
  8. F. Ruehle, “Data science applications to string theory,” Phys. Rept. 839 (2020) 1–117.
  9. J. Bao, Y.-H. He, E. Heyes, and E. Hirst, “Machine Learning Algebraic Geometry for Physics,” arXiv:2204.10334 [hep-th].
  10. Y.-H. He, E. Heyes, and E. Hirst, “Machine Learning in Physics and Geometry,” arXiv:2303.12626 [hep-th].
  11. Y.-H. He, “Deep-Learning the Landscape,” arXiv:1706.02714 [hep-th].
  12. D. Krefl and R.-K. Seong, “Machine Learning of Calabi-Yau Volumes,” Phys. Rev. D 96 no. 6, (2017) 066014, arXiv:1706.03346 [hep-th].
  13. F. Ruehle, “Evolving neural networks with genetic algorithms to study the String Landscape,” JHEP 08 (2017) 038, arXiv:1706.07024 [hep-th].
  14. J. Carifio, J. Halverson, D. Krioukov, and B. D. Nelson, “Machine Learning in the String Landscape,” JHEP 09 (2017) 157, arXiv:1707.00655 [hep-th].
  15. M. Headrick and T. Wiseman, “Numerical Ricci-flat metrics on K3,” Class. Quant. Grav. 22 (2005) 4931–4960, arXiv:hep-th/0506129.
  16. M. R. Douglas, R. L. Karp, S. Lukic, and R. Reinbacher, “Numerical Calabi-Yau metrics,” J. Math. Phys. 49 (2008) 032302, arXiv:hep-th/0612075.
  17. A. Ashmore, Y.-H. He, and B. A. Ovrut, “Machine Learning Calabi–Yau Metrics,” Fortsch. Phys. 68 no. 9, (2020) 2000068, arXiv:1910.08605 [hep-th].
  18. L. B. Anderson, M. Gerdes, J. Gray, S. Krippendorf, N. Raghuram, and F. Ruehle, “Moduli-dependent Calabi-Yau and SU(3)-structure metrics from Machine Learning,” JHEP 05 (2021) 013, arXiv:2012.04656 [hep-th].
  19. M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, “Numerical Calabi-Yau metrics from holomorphic networks,” arXiv:2012.04797 [hep-th].
  20. V. Jejjala, D. K. Mayorga Pena, and C. Mishra, “Neural network approximations for Calabi-Yau metrics,” JHEP 08 (2022) 105, arXiv:2012.15821 [hep-th].
  21. M. Larfors, A. Lukas, F. Ruehle, and R. Schneider, “Learning Size and Shape of Calabi-Yau Spaces,” arXiv:2111.01436 [hep-th].
  22. A. Ashmore, L. Calmon, Y.-H. He, and B. A. Ovrut, “Calabi-Yau Metrics, Energy Functionals and Machine-Learning,” arXiv:2112.10872 [hep-th].
  23. M. Larfors, A. Lukas, F. Ruehle, and R. Schneider, “Numerical metrics for complete intersection and Kreuzer–Skarke Calabi–Yau manifolds,” Mach. Learn. Sci. Tech. 3 no. 3, (2022) 035014, arXiv:2205.13408 [hep-th].
  24. P. Berglund, G. Butbaia, T. Hübsch, V. Jejjala, D. Mayorga Peña, C. Mishra, and J. Tan, “Machine Learned Calabi-Yau Metrics and Curvature,” arXiv:2211.09801 [hep-th].
  25. M. Gerdes and S. Krippendorf, “CYJAX: A package for Calabi-Yau metrics with JAX,” Mach. Learn. Sci. Tech. 4 no. 2, (2023) 025031, arXiv:2211.12520 [hep-th].
  26. A. Ashmore, Y.-H. He, E. Heyes, and B. A. Ovrut, “Numerical spectra of the Laplacian for line bundles on Calabi-Yau hypersurfaces,” JHEP 07 (2023) 164, arXiv:2305.08901 [hep-th].
  27. H. Ahmed and F. Ruehle, “Level crossings, attractor points and complex multiplication,” JHEP 06 (2023) 164, arXiv:2304.00027 [hep-th].
  28. D. S. Berman, Y.-H. He, and E. Hirst, “Machine learning Calabi-Yau hypersurfaces,” Physical Review D 105 no. 6, (Mar, 2022) . https://doi.org/10.1103%2Fphysrevd.105.066002.
  29. K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Machine Learning CICY Threefolds,” Phys. Lett. B 785 (2018) 65–72, arXiv:1806.03121 [hep-th].
  30. K. Bull, Y.-H. He, V. Jejjala, and C. Mishra, “Getting CICY High,” Phys. Lett. B 795 (2019) 700–706, arXiv:1903.03113 [hep-th].
  31. C. R. Brodie, A. Constantin, R. Deen, and A. Lukas, “Machine Learning Line Bundle Cohomology,” Fortsch. Phys. 68 no. 1, (2020) 1900087, arXiv:1906.08730 [hep-th].
  32. H. Erbin and R. Finotello, “Inception neural network for complete intersection Calabi-Yau 3-folds,” Mach. Learn. Sci. Tech. 2 no. 2, (2021) 02LT03, arXiv:2007.13379 [hep-th].
  33. B. Aslan, D. Platt, and D. Sheard, “Group invariant machine learning by fundamental domain projections,” in NeurIPS Workshop on Symmetry and Geometry in Neural Representations, pp. 181–218, PMLR. 2023.
  34. WORLD SCIENTIFIC (EUROPE), June, 2023. http://dx.doi.org/10.1142/9781800613706_0005.
  35. W. Cui, X. Gao, and J. Wang, “Machine learning on generalized complete intersection Calabi-Yau manifolds,” Phys. Rev. D 107 no. 8, (2023) 086004, arXiv:2209.10157 [hep-th].
  36. D. Klaewer and L. Schlechter, “Machine Learning Line Bundle Cohomologies of Hypersurfaces in Toric Varieties,” Phys. Lett. B 789 (2019) 438–443, arXiv:1809.02547 [hep-th].
  37. P. Berglund, B. Campbell, and V. Jejjala, “Machine Learning Kreuzer-Skarke Calabi-Yau Threefolds,” arXiv:2112.09117 [hep-th].
  38. T. S. Gherardini, “Exotic spheres’ metrics and solutions via Kaluza-Klein techniques,” JHEP 12 (2023) 100, arXiv:2309.01703 [hep-th].
  39. D. Aggarwal, Y.-H. He, E. Heyes, E. Hirst, H. N. S. Earp, and T. S. R. Silva, “Machine-learning Sasakian and G2subscript𝐺2G_{2}italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT topology on contact Calabi-Yau 7777-manifolds,” arXiv:2310.03064 [math.DG].
  40. R. Alawadhi, D. Angella, A. Leonardo, and T. Schettini Gherardini, “Constructing and machine learning calabi-yau five-folds,” Fortschritte der Physik 72 no. 2, (2024) 2300262. https://onlinelibrary.wiley.com/doi/abs/10.1002/prop.202300262.
  41. Y.-H. He and A. Lukas, “Machine Learning Calabi-Yau Four-folds,” Phys. Lett. B 815 (2021) 136139, arXiv:2009.02544 [hep-th].
  42. H. Erbin, R. Finotello, R. Schneider, and M. Tamaazousti, “Deep multi-task mining Calabi-Yau four-folds,” Mach. Learn. Sci. Tech. 3 no. 1, (2022) 015006, arXiv:2108.02221 [hep-th].
  43. J. Gray, A. S. Haupt, and A. Lukas, “All complete intersection calabi-yau four-folds,” Journal of High Energy Physics 2013 no. 7, (Jul, 2013) . https://doi.org/10.1007%2Fjhep07%282013%29070.
  44. J. Gray, A. S. Haupt, and A. Lukas, “Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds,” Journal of High Energy Physics 2014 no. 9, (Sep, 2014) . https://doi.org/10.1007%2Fjhep09%282014%29093.
  45. M. Kreuzer and H. Skarke, “Calabi-Yau four folds and toric fibrations,” J. Geom. Phys. 26 (1998) 272–290, arXiv:hep-th/9701175.
  46. M. Lynker, R. Schimmrigk, and A. Wißkirchen, “Landau-Ginzburg vacua of string, M- and F-theory at c=12,” Nuclear Physics B 550 no. 1-2, (Jun, 1999) 123–150. https://doi.org/10.1016%2Fs0550-3213%2899%2900204-7.
  47. G. Brown and A. Kasprzyk, “Four-dimensional projective orbifold hypersurfaces,” Experimental Mathematics 25 no. 2, (Dec, 2015) 176–193. https://doi.org/10.1080%2F10586458.2015.1054054.
  48. F. Schöller and H. Skarke, “All Weight Systems for Calabi-Yau Fourfolds from Reflexive Polyhedra,” Commun. Math. Phys. 372 no. 2, (2019) 657–678, arXiv:1808.02422 [hep-th].
  49. P. Berglund, Y.-H. He, E. Heyes, E. Hirst, V. Jejjala, and A. Lukas, “New Calabi-Yau Manifolds from Genetic Algorithms,” arXiv:2306.06159 [hep-th].
  50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research 12 (2011) 2825–2830.
  51. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015. https://www.tensorflow.org/. Software available from tensorflow.org.
  52. J. Bao, Y.-H. He, and E. Hirst, “Neurons on Amoebae,” J. Symb. Comput. 116 (2022) 1–38, arXiv:2106.03695 [math.AG].
  53. S. Chen, Y.-H. He, E. Hirst, A. Nestor, and A. Zahabi, “Mahler Measuring the Genetic Code of Amoebae,” arXiv:2212.06553 [hep-th].
  54. R.-K. Seong, “Unsupervised machine learning techniques for exploring tropical coamoeba, brane tilings and Seiberg duality,” Phys. Rev. D 108 no. 10, (2023) 106009, arXiv:2309.05702 [hep-th].
  55. J. Halverson, B. Nelson, and F. Ruehle, “Branes with Brains: Exploring String Vacua with Deep Reinforcement Learning,” JHEP 06 (2019) 003, arXiv:1903.11616 [hep-th].
  56. G. J. Loges and G. Shiu, “Breeding Realistic D-Brane Models,” Fortsch. Phys. 70 no. 5, (2022) 2200038, arXiv:2112.08391 [hep-th].
  57. G. Arias-Tamargo, Y.-H. He, E. Heyes, E. Hirst, and D. Rodriguez-Gomez, “Brain webs for brane webs,” Phys. Lett. B 833 (2022) 137376, arXiv:2202.05845 [hep-th].
  58. G. J. Loges and G. Shiu, “134 billion intersecting brane models,” JHEP 12 (2022) 097, arXiv:2206.03506 [hep-th].
  59. H.-Y. Chen, Y.-H. He, S. Lal, and M. Z. Zaz, “Machine Learning Etudes in Conformal Field Theories,” arXiv:2006.16114 [hep-th].
  60. G. Kántor, V. Niarchos, and C. Papageorgakis, “Solving Conformal Field Theories with Artificial Intelligence,” Phys. Rev. Lett. 128 no. 4, (2022) 041601, arXiv:2108.08859 [hep-th].
  61. G. Kántor, V. Niarchos, and C. Papageorgakis, “Conformal bootstrap with reinforcement learning,” Phys. Rev. D 105 no. 2, (2022) 025018, arXiv:2108.09330 [hep-th].
  62. G. Kántor, V. Niarchos, C. Papageorgakis, and P. Richmond, “6D (2,0) bootstrap with the soft-actor-critic algorithm,” Phys. Rev. D 107 no. 2, (2023) 025005, arXiv:2209.02801 [hep-th].
  63. V. Niarchos, C. Papageorgakis, P. Richmond, A. G. Stapleton, and M. Woolley, “Bootstrability in Line-Defect CFT with Improved Truncation Methods,” arXiv:2306.15730 [hep-th].
  64. J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, and Y. Xiao, “Quiver Mutations, Seiberg Duality and Machine Learning,” Phys. Rev. D 102 no. 8, (2020) 086013, arXiv:2006.10783 [hep-th].
  65. P.-P. Dechant, Y.-H. He, E. Heyes, and E. Hirst, “Cluster Algebras: Network Science and Machine Learning,” J. Comput. Algebra 8 (2023) , arXiv:2203.13847 [math.CO].
  66. M.-W. Cheung, P.-P. Dechant, Y.-H. He, E. Heyes, E. Hirst, and J.-R. Li, “Clustering Cluster Algebras with Clusters,” arXiv:2212.09771 [hep-th].
  67. S. Chen, P.-P. Dechant, Y.-H. He, E. Heyes, E. Hirst, and D. Riabchenko, “Machine Learning Clifford invariants of ADE Coxeter elements,” arXiv:2310.00041 [cs.LG].
  68. S. Abel and J. Rizos, “Genetic Algorithms and the Search for Viable String Vacua,” JHEP 08 (2014) 010, arXiv:1404.7359 [hep-th].
  69. M. Bies, M. Cvetič, R. Donagi, L. Lin, M. Liu, and F. Ruehle, “Machine Learning and Algebraic Approaches towards Complete Matter Spectra in 4d F-theory,” JHEP 01 (2021) 196, arXiv:2007.00009 [hep-th].
  70. S. Krippendorf, R. Kroepsch, and M. Syvaeri, “Revealing systematics in phenomenologically viable flux vacua with reinforcement learning,” arXiv:2107.04039 [hep-th].
  71. A. Constantin, T. R. Harvey, and A. Lukas, “Heterotic String Model Building with Monad Bundles and Reinforcement Learning,” Fortsch. Phys. 70 no. 2-3, (2022) 2100186, arXiv:2108.07316 [hep-th].
  72. S. Abel, A. Constantin, T. R. Harvey, and A. Lukas, “Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforcement Learning,” Fortsch. Phys. 70 no. 5, (2022) 2200034, arXiv:2110.14029 [hep-th].
  73. D. Berman, T. Fischbacher, G. Inverso, B. Scellier, and B. Scellier, “Vacua of ω𝜔\omegaitalic_ω-deformed SO(8) supergravity,” JHEP 06 (2022) 133, arXiv:2201.04173 [hep-th].
  74. S. A. Abel, A. Constantin, T. R. Harvey, A. Lukas, and L. A. Nutricati, “Decoding Nature with Nature’s Tools: Heterotic Line Bundle Models of Particle Physics with Genetic Algorithms and Quantum Annealing,” arXiv:2306.03147 [hep-th].
  75. A. Dubey, S. Krippendorf, and A. Schachner, “JAXVacua – A Framework for Sampling String Vacua,” arXiv:2306.06160 [hep-th].
  76. Y.-H. He, E. Hirst, and T. Peterken, “Machine-learning dessins d’enfants: explorations via modular and Seiberg-Witten curves,” J. Phys. A 54 no. 7, (2021) 075401, arXiv:2004.05218 [hep-th].
  77. J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Hilbert series, machine learning, and applications to physics,” Phys. Lett. B 827 (2022) 136966, arXiv:2103.13436 [hep-th].
  78. J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder, “Polytopes and Machine Learning,” arXiv:2109.09602 [math.CO].
  79. X. Gao and H. Zou, “Applying machine learning to the Calabi-Yau orientifolds with string vacua,” Phys. Rev. D 105 no. 4, (2022) 046017, arXiv:2112.04950 [hep-th].
  80. T. Coates, J. Hofscheier, and A. Kasprzyk, “Machine learning the dimension of a polytope,” 2022.
  81. T. Coates, A. M. Kasprzyk, and S. Veneziale, “Machine learning the dimension of a fano variety,” Nature Communications 14 no. 1, (Sep, 2023) 5526.
  82. T. Coates, A. M. Kasprzyk, and S. Veneziale, “Machine learning detects terminal singularities,” 2023.
  83. M. Manko, “An Upper Bound on the Critical Volume in a Class of Toric Sasaki-Einstein Manifolds,” arXiv:2209.14029 [hep-th].
  84. E. Choi and R.-K. Seong, “Machine Learning Regularization for the Minimum Volume Formula of Toric Calabi-Yau 3-folds,” arXiv:2310.19276 [hep-th].
  85. C. Vafa, “Evidence for F-theory,” Nuclear Physics B 469 no. 3, (Jun, 1996) 403–415. http://dx.doi.org/10.1016/0550-3213(96)00172-1.
  86. A. Klemm, B. Lian, S.-S. Roan, and S.-T. Yau, “Calabi-Yau four-folds for M- and F-theory compactifications,” Nuclear Physics B 518 no. 3, (May, 1998) 515–574. https://doi.org/10.1016%2Fs0550-3213%2897%2900798-0.
  87. S. Gukov, C. Vafa, and E. Witten, “CFT’s from Calabi-Yau four folds,” Nucl. Phys. B 584 (2000) 69–108, arXiv:hep-th/9906070. [Erratum: Nucl.Phys.B 608, 477–478 (2001)].
  88. R. Donagi and M. Wijnholt, “Model Building with F-Theory,” 2012.
  89. P. Candelas, M. Lynker, and R. Schimmrigk, “Calabi-Yau manifolds in weighted P4,” Nuclear Physics B 341 no. 2, (1990) 383–402. https://www.sciencedirect.com/science/article/pii/055032139090185G.
  90. A. Klemm and R. Schimmrigk, “Landau-Ginzburg string vacua,” Nucl. Phys. B 411 (1994) 559–583, arXiv:hep-th/9204060.
  91. M. Kreuzer and H. Skarke, “No mirror symmetry in Landau-Ginzburg spectra!,” Nucl. Phys. B 388 (1992) 113–130, arXiv:hep-th/9205004.
  92. M. Kreuzer and H. Skarke, “On the classification of quasihomogeneous functions,” Commun. Math. Phys. 150 (1992) 137, arXiv:hep-th/9202039.
  93. C. Vafa and N. P. Warner, “Catastrophes and the Classification of Conformal Theories,” Phys. Lett. B 218 (1989) 51–58.
  94. E. Witten, “Phases of N=2 theories in two-dimensions,” Nucl. Phys. B 403 (1993) 159–222, arXiv:hep-th/9301042.
  95. A. M. Kasprzyk, “Bounds on fake weighted projective space,” Kodai Mathematical Journal 32 no. 2, (June, 2009) . http://dx.doi.org/10.2996/kmj/1245982903.
  96. A. Hanany and K. D. Kennaway, “Dimer models and toric diagrams,” arXiv:hep-th/0503149.
  97. A. M. Kasprzyk, “Canonical toric fano threefolds,” Canadian Journal of Mathematics 62 no. 6, (Dec., 2010) 1293–1309. http://dx.doi.org/10.4153/CJM-2010-070-3.
  98. Graduate studies in mathematics. American Mathematical Soc., 2011.
  99. V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties,” J. Alg. Geom. 3 (1994) 493–545, arXiv:alg-geom/9310003.
  100. P. Candelas, X. de la Ossa, and S. H. Katz, “Mirror symmetry for Calabi-Yau hypersurfaces in weighted P**4 and extensions of Landau-Ginzburg theory,” Nucl. Phys. B 450 (1995) 267–292, arXiv:hep-th/9412117.
  101. V. Bouchard, “Lectures on complex geometry, Calabi-Yau manifolds and toric geometry,” arXiv:hep-th/0702063.
  102. V. Batyrev and K. Schaller, “Mirror symmetry for quasi-smooth Calabi-Yau hypersurfaces in weighted projective spaces,” J. Geom. Phys. 164 (2021) 104198, arXiv:2006.04465 [math.AG].
  103. H. Skarke, “Weight systems for toric Calabi-Yau varieties and reflexivity of Newton polyhedra,” Mod. Phys. Lett. A 11 (1996) 1637–1652, arXiv:alg-geom/9603007.
  104. J. Bao, Y.-H. He, E. Hirst, and S. Pietromonaco, “Lectures on the Calabi-Yau Landscape,” arXiv:2001.01212 [hep-th].
  105. T. Hübsch, Calabi-Yau Manifolds: A Bestiary for Physicists. G - Reference,Information and Interdisciplinary Subjects Series. World Scientific, 1994. https://books.google.co.uk/books?id=bTRqDQAAQBAJ.
  106. S. Sethi, C. Vafa, and E. Witten, “Constraints on low-dimensional string compactifications,” Nuclear Physics B 480 no. 1-2, (Nov, 1996) 213–224. https://doi.org/10.1016%2Fs0550-3213%2896%2900483-x.
  107. A. Chandra, A. Constantin, C. S. Fraser-Taliente, T. R. Harvey, and A. Lukas, “Enumerating Calabi-Yau Manifolds: Placing bounds on the number of diffeomorphism classes in the Kreuzer-Skarke list,” arXiv:2310.05909 [hep-th].
  108. N. Gendler, N. MacFadden, L. McAllister, J. Moritz, R. Nally, A. Schachner, and M. Stillman, “Counting Calabi-Yau Threefolds,” arXiv:2310.06820 [hep-th].
  109. C. Vafa, “String Vacua and Orbifoldized L-G Models,” Mod. Phys. Lett. A 4 (1989) 1169.
  110. V. V. Batyrev, “On the stringy Hodge numbers of mirrors of quasi-smooth Calabi-Yau hypersurfaces,” arXiv:2006.15825 [math.AG].
  111. Y.-H. He, V. Jejjala, and L. Pontiggia, “Patterns in Calabi-Yau Distributions,” Commun. Math. Phys. 354 no. 2, (2017) 477–524, arXiv:1512.01579 [hep-th].
  112. A. Ashmore and Y.-H. He, “Calabi-Yau three-folds: Poincaré polynomials and fractals,” in Strings, Gauge Fields, and the Geometry Behind, pp. 173–186. WORLD SCIENTIFIC, Dec, 2012. https://doi.org/10.1142%2F9789814412551_0007.
  113. M. Kreuzer and H. Skarke, “On the classification of reflexive polyhedra,” Commun. Math. Phys. 185 (1997) 495–508, arXiv:hep-th/9512204.
  114. M. Kreuzer and H. Skarke, “PALP: A package for analysing lattice polytopes with applications to toric geometry,” Computer Physics Communications 157 no. 1, (Feb, 2004) 87–106.
  115. A. Testolin, “Can neural networks do arithmetic? a survey on the elementary numerical skills of state-of-the-art deep learning models,” 2023.
  116. A. S. Haupt, A. Lukas, and K. S. Stelle, “M-theory on Calabi-Yau Five-Folds,” JHEP 05 (2009) 069, arXiv:0810.2685 [hep-th].
  117. S. Schäfer-Nameki and T. Weigand, “F-theory and 2d (0,2)02(0,2)( 0 , 2 ) theories,” JHEP 05 (2016) 059, arXiv:1601.02015 [hep-th].
  118. J. Tian and Y.-N. Wang, “Elliptic Calabi-Yau fivefolds and 2d (0,2) F-theory landscape,” JHEP 03 (2021) 069, arXiv:2009.10668 [hep-th].
  119. G. Curio and D. Lust, “New N=1 supersymmetric three-dimensional superstring vacua from U manifolds,” Phys. Lett. B 428 (1998) 95–104, arXiv:hep-th/9802193.
  120. R. Alawadhi, D. Angella, A. Leonardo, and T. S. Gherardini, “Constructing and Machine Learning Calabi-Yau Five-folds,” arXiv:2310.15966 [hep-th].
  121. M. Kreuzer and H. Skarke, “Calabi-yau data.” http://hep.itp.tuwien.ac.at/~kreuzer/CY/.
  122. A. S. Haupt, A. Lukas, and K. Stelle, “M-theory on Calabi-Yau five-folds,” Journal of High Energy Physics 2009 no. 05, (May, 2009) 069–069. https://doi.org/10.1088%2F1126-6708%2F2009%2F05%2F069.
  123. V. Dumachev, “Complete intersection calabi-yau six-folds,” Applied mathematical sciences 9 (2015) 7121–7137. https://api.semanticscholar.org/CorpusID:126262060.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com