Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s
GPT-5 High 14 tok/s Pro
GPT-4o 99 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Existence of smooth stable manifolds for a class of parabolic SPDEs with fractional noise (2310.17981v1)

Published 27 Oct 2023 in math.PR, math.AP, and math.DS

Abstract: Little seems to be known about the invariant manifolds for stochastic partial differential equations (SPDEs) driven by nonlinear multiplicative noise. Here we contribute to this aspect and analyze the Lu-Schmalfu{\ss} conjecture [Garrido-Atienza, et al., J. Differential Equations, 248(7):1637--1667, 2010] on the existence of stable manifolds for a class of parabolic SPDEs driven by nonlinear mutiplicative fractional noise. We emphasize that stable manifolds for SPDEs are infinite-dimensional objects, and the classical Lyapunov-Perron method cannot be applied, since the Lyapunov-Perron operator does not give any information about the backward orbit. However, by means of interpolation theory, we construct a suitable function space in which the discretized Lyapunov-Perron-type operator has a unique fixed point. Based on this we further prove the existence and smoothness of local stable manifolds for such SPDEs.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube