Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

A Unified Framework for Rank-based Loss Minimization (2310.17237v2)

Published 26 Oct 2023 in math.OC

Abstract: The empirical loss, commonly referred to as the average loss, is extensively utilized for training machine learning models. However, in order to address the diverse performance requirements of machine learning models, the use of the rank-based loss is prevalent, replacing the empirical loss in many cases. The rank-based loss comprises a weighted sum of sorted individual losses, encompassing both convex losses like the spectral risk, which includes the empirical risk and conditional value-at-risk, and nonconvex losses such as the human-aligned risk and the sum of the ranked range loss. In this paper, we introduce a unified framework for the optimization of the rank-based loss through the utilization of a proximal alternating direction method of multipliers. We demonstrate the convergence and convergence rate of the proposed algorithm under mild conditions. Experiments conducted on synthetic and real datasets illustrate the effectiveness and efficiency of the proposed algorithm.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.