Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Convergence of CART under Sufficient Impurity Decrease Condition (2310.17114v1)

Published 26 Oct 2023 in stat.ML and cs.LG

Abstract: The decision tree is a flexible machine learning model that finds its success in numerous applications. It is usually fitted in a recursively greedy manner using CART. In this paper, we investigate the convergence rate of CART under a regression setting. First, we establish an upper bound on the prediction error of CART under a sufficient impurity decrease (SID) condition \cite{chi2022asymptotic} -- our result improves upon the known result by \cite{chi2022asymptotic} under a similar assumption. Furthermore, we provide examples that demonstrate the error bound cannot be further improved by more than a constant or a logarithmic factor. Second, we introduce a set of easily verifiable sufficient conditions for the SID condition. Specifically, we demonstrate that the SID condition can be satisfied in the case of an additive model, provided that the component functions adhere to a ``locally reverse Poincar{\'e} inequality". We discuss several well-known function classes in non-parametric estimation to illustrate the practical utility of this concept.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube