Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rényi entanglement asymmetry in 1+1-dimensional conformal field theories (2310.15480v2)

Published 24 Oct 2023 in hep-th and cond-mat.stat-mech

Abstract: In this paper, we consider the R\'enyi entanglement asymmetry of excited states in the 1+1 dimensional free compact boson conformal field theory (CFT) at equilibrium. We obtain a universal CFT expression written by correlation functions for the charged moments via the replica trick. We provide detailed analytic computations of the second R\'enyi entanglement asymmetry in the free compact boson CFT for excited states $\Psi=V_{\beta}+V_{-\beta}$ and $\Phi=V_{\beta}+J$ with $V_{\beta}$ and $J=i\partial\phi$ being the vertex operator and current operator respectively. We make numerical tests of the universal CFT computations using the XX spin chain model. Taking the non-Hermite fake RDMs into consideration, we propose an effective way to test them numerically, which can be applied to other excited states. The CFT predictions are in perfect agreement with the exact numerical calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. P. Calabrese and J. Cardy, “Entanglement entropy and quantum field theory,” International Journal of Quantum Information, vol. 4, 2006.
  2. J. Eisert, M. Cramer, and M. B. Plenio, “Area laws for the entanglement entropy - a review,” 2008.
  3. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” Journal of Physics A: Mathematical and Theoretical, 2009.
  4. N. Laflorencie, “Quantum entanglement in condensed matter systems,” Phys. Rept., vol. 646, pp. 1–59, 2016.
  5. K. Charles and M. Paul, Introduction to Solid State Physics. John Wiley & Sons, 2018.
  6. J. F. Annett, “Superconductivity, superfluids and condensates,” Oxford University Press, 2004.
  7. M. Goldstein and E. Sela, “Symmetry-resolved entanglement in many-body systems.,” American Physical Society, no. 20, 2018.
  8. E. Cornfeld, M. Goldstein, and E. Sela, “Imbalance entanglement: Symmetry decomposition of negativity,” Phys. Rev. A, vol. 98, no. 3, p. 032302, 2018.
  9. H.-H. Chen, “Symmetry decomposition of relative entropies in conformal field theory,” JHEP, vol. 07, p. 084, 2021.
  10. R. Bonsignori, P. Ruggiero, and P. Calabrese, “Symmetry resolved entanglement in free fermionic systems,” J. Phys. A, vol. 52, no. 47, p. 475302, 2019.
  11. S. Murciano, G. Di Giulio, and P. Calabrese, “Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach,” SciPost Phys., vol. 8, p. 046, 2020.
  12. H.-H. Chen, “Charged Rényi negativity of massless free bosons,” JHEP, vol. 02, p. 117, 2022.
  13. D. X. Horváth and P. Calabrese, “Symmetry resolved entanglement in integrable field theories via form factor bootstrap,” JHEP, vol. 11, p. 131, 2020.
  14. S. Fraenkel and M. Goldstein, “Symmetry resolved entanglement: Exact results in 1D and beyond,” J. Stat. Mech., vol. 2003, no. 3, p. 033106, 2020.
  15. S. Murciano, G. Di Giulio, and P. Calabrese, “Entanglement and symmetry resolution in two dimensional free quantum field theories,” JHEP, vol. 08, p. 073, 2020.
  16. D. Azses and E. Sela, “Symmetry-resolved entanglement in symmetry-protected topological phases,” Phys. Rev. B, vol. 102, no. 23, p. 235157, 2020.
  17. G. Parez, R. Bonsignori, and P. Calabrese, “Quasiparticle dynamics of symmetry-resolved entanglement after a quench: Examples of conformal field theories and free fermions,” Phys. Rev. B, vol. 103, no. 4, p. L041104, 2021.
  18. H.-H. Chen, “Dynamics of charge imbalance resolved negativity after a global quench in free scalar field theory,” JHEP, vol. 08, p. 146, 2022. [Erratum: JHEP 10, 157 (2022)].
  19. H.-H. Chen and Z.-X. Huang, “Dynamics of charge imbalance resolved negativity after a local joining quench,” 8 2023.
  20. A. Rath, V. Vitale, S. Murciano, M. Votto, J. Dubail, R. Kueng, C. Branciard, P. Calabrese, and B. Vermersch, “Entanglement Barrier and its Symmetry Resolution: Theory and Experimental Observation,” PRX Quantum, vol. 4, no. 1, p. 010318, 2023.
  21. B. Bertini, P. Calabrese, M. Collura, K. Klobas, and C. Rylands, “Nonequilibrium Full Counting Statistics and Symmetry-Resolved Entanglement from Space-Time Duality,” Phys. Rev. Lett., vol. 131, no. 14, p. 140401, 2023.
  22. M. Fossati, F. Ares, and P. Calabrese, “Symmetry-resolved entanglement in critical non-Hermitian systems,” Phys. Rev. B, vol. 107, no. 20, p. 205153, 2023.
  23. A. Lukin, M. Rispoli, R. Schittko, and M. Greiner, “Probing entanglement in a many-body-localized system,” 2018.
  24. D. Azses, R. Haenel, Y. Naveh, R. Raussendorf, E. Sela, and E. G. Dalla Torre, “Identification of Symmetry-Protected Topological States on Noisy Quantum Computers,” Phys. Rev. Lett., vol. 125, no. 12, p. 120502, 2020.
  25. A. Neven et al., “Symmetry-resolved entanglement detection using partial transpose moments,” npj Quantum Inf., vol. 7, p. 152, 2021.
  26. V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, B. Vermersch, and M. Dalmonte, “Symmetry-resolved dynamical purification in synthetic quantum matter,” SciPost Phys., vol. 12, no. 3, p. 106, 2022.
  27. F. Ares, S. Murciano, and P. Calabrese, “Entanglement asymmetry as a probe of symmetry breaking,” 2022.
  28. L. Capizzi and V. Vitale, “A universal formula for the entanglement asymmetry of matrix product states,” 10 2023.
  29. F. Ares, S. Murciano, E. Vernier, and P. Calabrese, “Lack of symmetry restoration after a quantum quench: an entanglement asymmetry study,” SciPost Phys., vol. 15, p. 089, 2023.
  30. B. Bertini, K. Klobas, M. Collura, P. Calabrese, and C. Rylands, “Dynamics of charge fluctuations from asymmetric initial states,” 6 2023.
  31. L. Capizzi and M. Mazzoni, “Entanglement asymmetry in the ordered phase of many-body systems: the Ising Field Theory,” 7 2023.
  32. F. Ferro, F. Ares, and P. Calabrese, “Non-equilibrium entanglement asymmetry for discrete groups: the example of the XY spin chain,” 7 2023.
  33. C. Rylands, K. Klobas, F. Ares, P. Calabrese, S. Murciano, and B. Bertini, “Microscopic origin of the quantum Mpemba effect in integrable systems,” 10 2023.
  34. S. Murciano, F. Ares, I. Klich, and P. Calabrese, “Entanglement asymmetry and quantum Mpemba effect in the XY spin chain,” 10 2023.
  35. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka, and Z. Wei, “Pseudo entropy in free quantum field theories,” 2020.
  36. A. Mollabashi, N. Shiba, T. Takayanagi, K. Tamaoka, and Z. Wei, “Aspects of pseudo entropy in field theories,” 2021.
  37. S. Murciano, P. Calabrese, and R. M. Konik, “Generalized entanglement entropies in two-dimensional conformal field theory,” JHEP, vol. 05, p. 152, 2022.
  38. Z. Ma, C. Han, Y. Meir, and E. Sela, “Symmetric inseparability and number entanglement in charge-conserving mixed states,” Phys. Rev. A, vol. 105, no. 4, p. 042416, 2022.
  39. C. Han, Y. Meir, and E. Sela, “Realistic Protocol to Measure Entanglement at Finite Temperatures,” Phys. Rev. Lett., vol. 130, no. 13, p. 136201, 2023.
  40. F. C. Alcaraz, M. I. Berganza, and G. Sierra, “Entanglement of low-energy excitations in Conformal Field Theory,” Phys. Rev. Lett., vol. 106, p. 201601, 2011.
  41. M. I. Berganza, F. C. Alcaraz, and G. Sierra, “Entanglement of excited states in critical spin chians,” J. Stat. Mech., vol. 1201, p. P01016, 2012.
  42. L. Capizzi, P. Ruggiero, and P. Calabrese, “Symmetry resolved entanglement entropy of excited states in a CFT,” J. Stat. Mech., vol. 2007, p. 073101, 2020.
  43. Graduate Texts in Contemporary Physics, New York: Springer-Verlag, 1997.
  44. M.-C. Chung and I. Peschel, “Density-matrix spectra of solvable fermionic systems,” Phys. Rev. B, vol. 64, p. 064412, 2001.
  45. I. Peschel, “Calculation of reduced density matrices from correlation functions,” 2002.
  46. I. Peschel and V. Eisler, “Reduced density matrices and entanglement entropy in free lattice models,” Journal of Physics A Mathematical General, vol. 42, no. 50, pp. 872–893, 2009.
  47. R. Podgornik, “Book review: Quantum phase transitions. s. sachdev, cambridge university press, 1999,” Journal of Statistical Physics, vol. 103, no. 5, pp. 1139–1141, 2001.
  48. M. Fagotti and P. Calabrese, “Entanglement entropy of two disjoint blocks in xy chains,” Journal of Statistical Mechanics:Theory and Experiment, 2010.
  49. S. Sachdev, Quantum Phase Transitions. Handbook of Magnetism and Advanced Magnetic Materials, 2011.
  50. G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, “Entanglement in quantum critical phenomena,” Phys. Rev. Lett., vol. 90, p. 227902, 2003.
  51. R. Balian and E. Brezin, “Nonunitary bogoliubov transformations and extension of wick’s theorem,” Il Nuovo Cimento B, vol. 64, no. 1, pp. 37–55, 1969.
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.