Non-invertible Symmetries in 2D from Type IIB String Theory (2310.15339v2)
Abstract: We propose a top-down approach to non-invertible symmetries in 2D QFTs and their associated symmetry topological field theories. We focus on the gauge theory engineered on D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to derive the symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity under dimensional reduction. We also identify branes behind the non-invertible topological lines by dimensionally reducing their worldvolume actions. The action of non-invertible lines on charged local operators is then realized as the Hanany-Witten transition.
- D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, “Generalized Global Symmetries,” JHEP 02 (2015) 172, arXiv:1412.5148 [hep-th].
- C. Cordova, T. T. Dumitrescu, K. Intriligator, and S.-H. Shao, “Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond,” in 2022 Snowmass Summer Study. 5, 2022. arXiv:2205.09545 [hep-th].
- S. Schafer-Nameki, “ICTP Lectures on (Non-)Invertible Generalized Symmetries,” arXiv:2305.18296 [hep-th].
- L. Bhardwaj, L. E. Bottini, L. Fraser-Taliente, L. Gladden, D. S. W. Gould, A. Platschorre, and H. Tillim, “Lectures on Generalized Symmetries,” arXiv:2307.07547 [hep-th].
- R. Luo, Q.-R. Wang, and Y.-N. Wang, “Lecture Notes on Generalized Symmetries and Applications,” 7, 2023. arXiv:2307.09215 [hep-th].
- S.-H. Shao, “What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetry,” arXiv:2308.00747 [hep-th].
- M. Del Zotto, J. J. Heckman, D. S. Park, and T. Rudelius, “On the Defect Group of a 6D SCFT,” Lett. Math. Phys. 106 no. 6, (2016) 765–786, arXiv:1503.04806 [hep-th].
- I. Garcia Etxebarria, B. Heidenreich, and D. Regalado, “IIB flux non-commutativity and the global structure of field theories,” JHEP 10 (2019) 169, arXiv:1908.08027 [hep-th].
- F. Albertini, M. Del Zotto, I. García Etxebarria, and S. S. Hosseini, “Higher Form Symmetries and M-theory,” JHEP 12 (2020) 203, arXiv:2005.12831 [hep-th].
- D. R. Morrison, S. Schafer-Nameki, and B. Willett, “Higher-Form Symmetries in 5d,” JHEP 09 (2020) 024, arXiv:2005.12296 [hep-th].
- F. Apruzzi, I. Bah, F. Bonetti, and S. Schafer-Nameki, “Noninvertible Symmetries from Holography and Branes,” Phys. Rev. Lett. 130 no. 12, (2023) 121601, arXiv:2208.07373 [hep-th].
- I. Garcia Etxebarria, “Branes and Non-Invertible Symmetries,” Fortsch. Phys. 70 no. 11, (2022) 2200154, arXiv:2208.07508 [hep-th].
- J. J. Heckman, M. Hübner, E. Torres, and H. Y. Zhang, “The Branes Behind Generalized Symmetry Operators,” arXiv:2209.03343 [hep-th].
- J. J. Heckman, M. Hubner, E. Torres, X. Yu, and H. Y. Zhang, “Top down approach to topological duality defects,” Phys. Rev. D 108 no. 4, (2023) 046015, arXiv:2212.09743 [hep-th].
- F. Apruzzi, F. Bonetti, D. S. W. Gould, and S. Schafer-Nameki, “Aspects of Categorical Symmetries from Branes: SymTFTs and Generalized Charges,” arXiv:2306.16405 [hep-th].
- I. Bah, E. Leung, and T. Waddleton, “Non-Invertible Symmetries, Brane Dynamics, and Tachyon Condensation,” arXiv:2306.15783 [hep-th].
- M. Dierigl, J. J. Heckman, M. Montero, and E. Torres, “R7-Branes as Charge Conjugation Operators,” arXiv:2305.05689 [hep-th].
- M. Cvetič, J. J. Heckman, M. Hübner, and E. Torres, “Fluxbranes, Generalized Symmetries, and Verlinde’s Metastable Monopole,” arXiv:2305.09665 [hep-th].
- C. Lawrie, X. Yu, and H. Y. Zhang, “Intermediate Defect Groups, Polarization Pairs, and Non-invertible Duality Defects,” arXiv:2306.11783 [hep-th].
- E. P. Verlinde, “Fusion Rules and Modular Transformations in 2D Conformal Field Theory,” Nucl. Phys. B 300 (1988) 360–376.
- J. Fuchs, I. Runkel, and C. Schweigert, “TFT construction of RCFT correlators 1. Partition functions,” Nucl. Phys. B 646 (2002) 353–497, arXiv:hep-th/0204148.
- J. Frohlich, J. Fuchs, I. Runkel, and C. Schweigert, “Kramers-Wannier duality from conformal defects,” Phys. Rev. Lett. 93 (2004) 070601, arXiv:cond-mat/0404051.
- L. Bhardwaj and Y. Tachikawa, “On finite symmetries and their gauging in two dimensions,” JHEP 03 (2018) 189, arXiv:1704.02330 [hep-th].
- C.-M. Chang, Y.-H. Lin, S.-H. Shao, Y. Wang, and X. Yin, “Topological Defect Lines and Renormalization Group Flows in Two Dimensions,” JHEP 01 (2019) 026, arXiv:1802.04445 [hep-th].
- R. Thorngren and Y. Wang, “Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases,” arXiv:1912.02817 [hep-th].
- Z. Komargodski, K. Ohmori, K. Roumpedakis, and S. Seifnashri, “Symmetries and strings of adjoint QCD22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT,” JHEP 03 (2021) 103, arXiv:2008.07567 [hep-th].
- R. Thorngren and Y. Wang, “Fusion Category Symmetry II: Categoriosities at c𝑐citalic_c = 1 and Beyond,” arXiv:2106.12577 [hep-th].
- S. Franco, D. Ghim, S. Lee, R.-K. Seong, and D. Yokoyama, “2d (0,2) Quiver Gauge Theories and D-Branes,” JHEP 09 (2015) 072, arXiv:1506.03818 [hep-th].
- S. Franco, S. Lee, and R.-K. Seong, “Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0,2) Quivers,” JHEP 02 (2016) 047, arXiv:1510.01744 [hep-th].
- S. Franco, S. Lee, and R.-K. Seong, “Brane brick models and 2d (0, 2) triality,” JHEP 05 (2016) 020, arXiv:1602.01834 [hep-th].
- S. Franco, S. Lee, R.-K. Seong, and C. Vafa, “Brane Brick Models in the Mirror,” JHEP 02 (2017) 106, arXiv:1609.01723 [hep-th].
- S. Franco, S. Lee, and R.-K. Seong, “Orbifold Reduction and 2d (0,2) Gauge Theories,” JHEP 03 (2017) 016, arXiv:1609.07144 [hep-th].
- S. Franco, D. Ghim, S. Lee, and R.-K. Seong, “Elliptic Genera of 2d (0,2) Gauge Theories from Brane Brick Models,” JHEP 06 (2017) 068, arXiv:1702.02948 [hep-th].
- S. Franco and G. Musiker, “Higher Cluster Categories and QFT Dualities,” Phys. Rev. D 98 no. 4, (2018) 046021, arXiv:1711.01270 [hep-th].
- S. Franco and A. Hasan, “3d3𝑑3d3 italic_d printing of 2d2𝑑2d2 italic_d 𝒩=(0,2)𝒩02\mathcal{N}=\left(0,2\right)caligraphic_N = ( 0 , 2 ) gauge theories,” JHEP 05 (2018) 082, arXiv:1801.00799 [hep-th].
- S. Franco, A. Hasan, and X. Yu, “On the Classification of Duality Webs for Graded Quivers,” JHEP 06 (2020) 130, arXiv:2001.08776 [hep-th].
- S. Franco and X. Yu, “BFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT: a general class of 2d𝒩𝒩\mathcal{N}caligraphic_N = (0, 2) theories, 3-manifolds and toric geometry,” JHEP 08 (2022) 277, arXiv:2107.00667 [hep-th].
- S. Franco, A. Mininno, A. M. Uranga, and X. Yu, “Spin(7) orientifolds and 2d 𝒩𝒩\mathcal{N}caligraphic_N = (0, 1) triality,” JHEP 01 (2022) 058, arXiv:2112.03929 [hep-th].
- S. Franco, A. Mininno, A. M. Uranga, and X. Yu, “2d 𝒩𝒩\mathcal{N}caligraphic_N = (0, 1) gauge theories and Spin(7) orientifolds,” JHEP 03 (2022) 150, arXiv:2110.03696 [hep-th].
- S. Franco, D. Ghim, and R.-K. Seong, “Brane brick models for the Sasaki-Einstein 7-manifolds Yp,k𝑝𝑘{}^{p,k}start_FLOATSUPERSCRIPT italic_p , italic_k end_FLOATSUPERSCRIPT(ℂℂ\mathbb{C}blackboard_Cℙℙ\mathbb{P}blackboard_P11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT× ℂℂ\mathbb{C}blackboard_Cℙℙ\mathbb{P}blackboard_P11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT) and Yp,k𝑝𝑘{}^{p,k}start_FLOATSUPERSCRIPT italic_p , italic_k end_FLOATSUPERSCRIPT(ℂℂ\mathbb{C}blackboard_Cℙℙ\mathbb{P}blackboard_P22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT),” JHEP 03 (2023) 050, arXiv:2212.02523 [hep-th].
- A. Gadde, S. Gukov, and P. Putrov, “(0, 2) trialities,” JHEP 03 (2014) 076, arXiv:1310.0818 [hep-th].
- D. Martelli and J. Sparks, “Notes on toric Sasaki-Einstein seven-manifolds and AdS(4) / CFT(3),” JHEP 11 (2008) 016, arXiv:0808.0904 [hep-th].
- S. Franco and X. Yu, “Generalized Global Symmetries in Brane Brick Models,” to appear.
- N. Reshetikhin and V. G. Turaev, “Invariants of three manifolds via link polynomials and quantum groups,” Invent. Math. 103 (1991) 547–597.
- V. G. Turaev and O. Y. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols,” Topology 31 (1992) 865–902.
- J. W. Barrett and B. W. Westbury, “Invariants of piecewise linear three manifolds,” Trans. Am. Math. Soc. 348 (1996) 3997–4022, arXiv:hep-th/9311155.
- E. Witten, “AdS / CFT correspondence and topological field theory,” JHEP 12 (1998) 012, arXiv:hep-th/9812012.
- A. Kirillov, Jr. and B. Balsam, “Turaev-Viro invariants as an extended TQFT,” arXiv:1004.1533 [math.GT].
- A. Kapustin and N. Saulina, “Surface operators in 3d Topological Field Theory and 2d Rational Conformal Field Theory,” arXiv:1012.0911 [hep-th].
- A. Kitaev and L. Kong, “Models for Gapped Boundaries and Domain Walls,” Commun. Math. Phys. 313 no. 2, (2012) 351–373, arXiv:1104.5047 [cond-mat.str-el].
- J. Fuchs, C. Schweigert, and A. Valentino, “Bicategories for boundary conditions and for surface defects in 3-d TFT,” Commun. Math. Phys. 321 (2013) 543–575, arXiv:1203.4568 [hep-th].
- D. S. Freed and C. Teleman, “Relative quantum field theory,” Commun. Math. Phys. 326 (2014) 459–476, arXiv:1212.1692 [hep-th].
- D. S. Freed and C. Teleman, “Topological dualities in the Ising model,” Geom. Topol. 26 (2022) 1907–1984, arXiv:1806.00008 [math.AT].
- D. S. Freed, G. W. Moore, and C. Teleman, “Topological symmetry in quantum field theory,” arXiv:2209.07471 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Symmetry TFTs for Non-Invertible Defects,” arXiv:2209.11062 [hep-th].
- F. Baume, J. J. Heckman, M. Hübner, E. Torres, A. P. Turner, and X. Yu, “SymTrees and Multi-Sector QFTs,” arXiv:2310.12980 [hep-th].
- F. Apruzzi, F. Bonetti, I. García Etxebarria, S. S. Hosseini, and S. Schafer-Nameki, “Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].
- M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs for 3d QFTs from M-theory,” arXiv:2210.03703 [hep-th].
- M. Etheredge, I. Garcia Etxebarria, B. Heidenreich, and S. Rauch, “Branes and symmetries for 𝒩=3𝒩3\mathcal{N}=3caligraphic_N = 3 S-folds,” arXiv:2302.14068 [hep-th].
- D. Belov and G. W. Moore, “Holographic Action for the Self-Dual Field,” arXiv:hep-th/0605038.
- S. Gukov, P.-S. Hsin, and D. Pei, “Generalized global symmetries of T[M]𝑇delimited-[]𝑀T[M]italic_T [ italic_M ] theories. Part I,” JHEP 04 (2021) 232, arXiv:2010.15890 [hep-th].
- M. D. F. de Wild Propitius, Topological interactions in broken gauge theories. PhD thesis, Amsterdam U., 1995. arXiv:hep-th/9511195.
- J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].
- D. Tambara and S. Yamagami, “Tensor categories with fusion rules of self-duality for finite abelian groups,” Journal of Algebra 209 no. 2, (1998) 692–707. https://www.sciencedirect.com/science/article/pii/S0021869398975585.
- J. Kaidi, G. Zafrir, and Y. Zheng, “Non-invertible symmetries of 𝒩𝒩\mathcal{N}caligraphic_N = 4 SYM and twisted compactification,” JHEP 08 (2022) 053, arXiv:2205.01104 [hep-th].
- V. Bashmakov, M. Del Zotto, A. Hasan, and J. Kaidi, “Non-invertible Symmetries of Class 𝒮𝒮\mathcal{S}caligraphic_S Theories,” arXiv:2211.05138 [hep-th].
- Z. Sun and Y. Zheng, “When are Duality Defects Group-Theoretical?,” arXiv:2307.14428 [hep-th].
- J. J. Heckman and L. Tizzano, “6D Fractional Quantum Hall Effect,” JHEP 05 (2018) 120, arXiv:1708.02250 [hep-th].
- F. Apruzzi, “Higher form symmetries TFT in 6d,” JHEP 11 (2022) 050, arXiv:2203.10063 [hep-th].
- Springer Science & Business Media, 2007.
- J. Cheeger and J. Simons, “Differential characters and geometric invariants,” 1985. https://api.semanticscholar.org/CorpusID:50800553.
- C. Baer and C. Becker, “Differential characters and geometric chains,” 2013.
- AMS, Providence, USA, 2003.
- P. G. Camara, L. E. Ibanez, and F. Marchesano, “RR photons,” JHEP 09 (2011) 110, arXiv:1106.0060 [hep-th].
- M. R. Douglas, “Branes within branes,” NATO Sci. Ser. C 520 (1999) 267–275, arXiv:hep-th/9512077.
- K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible Condensation Defects,” arXiv:2204.02407 [hep-th].
- J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141 [hep-th].
- Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016, arXiv:2111.01139 [hep-th].
- A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl. Phys. B 492 (1997) 152–190, arXiv:hep-th/9611230.
- G. Kac, “Finite group rings,” Trans. Moscow Math. Soc. 15 (1966) 251–294.
- C. Zhang and C. Córdova, “Anomalies of (1+1)D11𝐷(1+1)D( 1 + 1 ) italic_D categorical symmetries,” arXiv:2304.01262 [cond-mat.str-el].
- A. Perez-Lona, D. Robbins, E. Sharpe, T. Vandermeulen, and X. Yu, “Notes on gauging noninvertible symmetries, part 1: Multiplicity-free cases,” arXiv:2311.16230 [hep-th].
- O. Diatlyk, C. Luo, Y. Wang, and Q. Weller, “Gauging Non-Invertible Symmetries: Topological Interfaces and Generalized Orbifold Groupoid in 2d QFT,” arXiv:2311.17044 [hep-th].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.