Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Hybrid GNN approach for predicting node data for 3D meshes (2310.14707v1)

Published 23 Oct 2023 in cs.LG, cs.NA, and math.NA

Abstract: Metal forging is used to manufacture dies. We require the best set of input parameters for the process to be efficient. Currently, we predict the best parameters using the finite element method by generating simulations for the different initial conditions, which is a time-consuming process. In this paper, introduce a hybrid approach that helps in processing and generating new data simulations using a surrogate graph neural network model based on graph convolutions, having a cheaper time cost. We also introduce a hybrid approach that helps in processing and generating new data simulations using the model. Given a dataset representing meshes, our focus is on the conversion of the available information into a graph or point cloud structure. This new representation enables deep learning. The predicted result is similar, with a low error when compared to that produced using the finite element method. The new models have outperformed existing PointNet and simple graph neural network models when applied to produce the simulations.

Summary

We haven't generated a summary for this paper yet.