Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Neural Network-based Surrogate Models for Finite Element Analysis (2211.09373v1)

Published 17 Nov 2022 in math.NA, cs.DC, and cs.NA

Abstract: Current simulation of metal forging processes use advanced finite element methods. Such methods consist of solving mathematical equations, which takes a significant amount of time for the simulation to complete. Computational time can be prohibitive for parametric response surface exploration tasks. In this paper, we propose as an alternative, a Graph Neural Network-based graph prediction model to act as a surrogate model for parameters search space exploration and which exhibits a time cost reduced by an order of magnitude. Numerical experiments show that this new model outperforms the Point-Net model and the Dynamic Graph Convolutional Neural Net model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.