Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Coordinate Descent Approach to Atomic Norm Denoising (2310.14182v3)

Published 22 Oct 2023 in eess.SP

Abstract: Atomic norm minimization is of great interest in various applications of sparse signal processing including super-resolution line-spectral estimation and signal denoising. In practice, atomic norm minimization (ANM) is formulated as semi-definite programming (SDP) that is generally hard to solve. This work introduces a low-complexity solver for a type of ANM known as atomic norm soft thresholding (AST). The proposed method uses the framework of coordinate descent and exploits the sparsity-inducing nature of atomic-norm regularization. Specifically, this work first provides an equivalent, non-convex formulation of AST. It is then proved that applying a coordinate descent algorithm on the non-convex formulation leads to convergence to the global solution. For the case of a single measurement vector of length N and complex exponential basis, the complexity of each step in the coordinate descent procedure is O(N log N ), rendering the method efficient for large-scale problems. Through simulations, the proposed solver is shown to be faster than alternating direction method of multiplier (ADMM) or customized interior point SDP solver if the problems are sparse. It is demonstrated that the coordinate descent solver can be modified for AST with multiple dimensions and multiple measurement vectors as well as a variety of general basis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.