Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Entropic partial orderings of quantum measurements (2310.14086v3)

Published 21 Oct 2023 in quant-ph, math-ph, and math.MP

Abstract: We investigate four partial orderings on the space of quantum measurements (i.e on POVMs or positive operator valued measures), describing four notions of coarse/fine-ness of measurement. These are the partial orderings induced by: (1) classical post-processing, (2) measured relative entropy, (3) observational entropy, and (4) linear relation of POVMs. The orderings form a hierarchy of implication, where e.g. post-processing relation implies all the others. We show that this hierarchy is strict for general POVMs, with examples showing that all four orderings are strictly inequivalent. Restricted to projective measurements, all are equivalent. Finally we show that observational entropy equality $S_M = S_N$ (for all $\rho$) holds if and only if $M \equiv N$ are post-processing equivalent, which shows that the first three orderings induce identical equivalence classes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (78)
  1. E. B. Davies and J. T. Lewis, An operational approach to quantum probability, Comm. Math. Phys. 17, 239 (1970).
  2. E. B. Davies, Quantum theory of open systems (Academic Press, 1976).
  3. A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Publications of the Scuola Normale Superiore (Scuola Normale Superiore, 2011).
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  5. M. M. Wilde, Quantum Information Theory (Cambridge University Press, 2013) arXiv:1106.1445v8.
  6. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
  7. P. Busch, P. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement, Lecture Notes in Physics Monographs (Springer Berlin Heidelberg, 2008).
  8. G. Chiribella and G. M. D’Ariano, Extremal covariant positive operator valued measures, J. Math. Phys. 45, 4435 (2004), arXiv:quant-ph/0406237 [quant-ph] .
  9. C. Hein and G. Ludwig, Foundations of Quantum Mechanics I, Theoretical and Mathematical Physics (Springer Berlin Heidelberg, 2012).
  10. G. Mauro D’Ariano, P. Lo Presti, and P. Perinotti, Classical randomness in quantum measurements, J. Phys. A: Math. Gen. 38, 5979 (2005), arXiv:quant-ph/0408115 [quant-ph] .
  11. G. Chiribella, G. M. D’Ariano, and D. Schlingemann, Barycentric decomposition of quantum measurements in finite dimensions, J. Math. Phys. 51, 022111 (2010), arXiv:0807.4803 [math-ph] .
  12. T. Heinosaari and J.-P. Pellonpää, Generalized coherent states and extremal positive operator valued measures, J. Phys. A: Math. Gen. 45, 244019 (2012), arXiv:1112.4280 [quant-ph] .
  13. J.-P. Pellonpää, Complete characterization of extreme quantum observables in infinite dimensions, J. Phys. A: Math. Gen. 44, 085304 (2011).
  14. A. Winter, “Extrinsic“ and “Intrinsic” Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures, Comm. Math. Phys. 244, 157 (2004), arXiv:quant-ph/0109050 [quant-ph] .
  15. H. Martens and W. M. de Muynck, Nonideal quantum measurements, Foundations of Physics 20, 255 (1990a).
  16. H. Martens and W. M. de Muynck, The inaccuracy principle, Foundations of Physics 20, 357 (1990b).
  17. A. Jencova, Comparison of quantum channels and statistical experiments,   (2015), arXiv:1512.07016 [quant-ph] .
  18. L. Leppäjärvi and M. Sedlák, Postprocessing of quantum instruments, Phys. Rev. A 103, 022615 (2021), arXiv:2010.15816 [quant-ph] .
  19. E. Haapasalo and J.-P. Pellonpää, Optimal quantum observables, J. Math. Phys. 58, 122104 (2017), arXiv:1705.03636 [quant-ph] .
  20. P. Lipka-Bartosik and P. Skrzypczyk, Operational advantages provided by nonclassical teleportation, Phys. Rev. Res. 2, 023029 (2020), arXiv:1908.05107 [quant-ph] .
  21. E. Haapasalo, T. Heinosaari, and T. Miyadera, The unavoidable information flow to environment in quantum measurements, J. Math. Phys. 59, 082106 (2018), arXiv:1710.08681 [quant-ph] .
  22. G. Kimura, K. Nuida, and H. Imai, Distinguishability measures and entropies for general probabilistic theories, Rep. Math. Phys. 66, 175 (2010), arXiv:0910.0994 [quant-ph] .
  23. Y. Kuramochi, Minimal sufficient positive-operator valued measure on a separable Hilbert space, J. Math. Phys. 56, 102205 (2015), arXiv:1506.07288 [quant-ph] .
  24. M. Dall’Arno, G. M. D’Ariano, and M. F. Sacchi, Purification of noisy quantum measurements, Phys. Rev. A 82, 042315 (2010), arXiv:1009.3127 [quant-ph] .
  25. S. Watanabe, Private and quantum capacities of more capable and less noisy quantum channels, Phys. Rev. A 85, 012326 (2012), arXiv:1110.5746 [quant-ph] .
  26. D. Farenick, R. Floricel, and S. Plosker, Approximately clean quantum probability measures, J. Math. Phys. 54, 052201 (2013), arXiv:1811.11857 [quant-ph] .
  27. R. Nasser, Characterizations of two channel orderings: Input-degradedness and the shannon ordering, IEEE Trans. Inf. Theory 64, 6759 (2018).
  28. T. Heinosaari and Y. Kuramochi, Post-processing minimal joint observables, J. Phys. A: Math. Gen. 52, 065301 (2019), arXiv:1808.10222 [quant-ph] .
  29. T. Heinosaari, M. A. Jivulescu, and I. Nechita, Order preserving maps on quantum measurements, Quantum 6, 853 (2022), arXiv:2202.00725 [quant-ph] .
  30. C. E. Shannon, A note on a partial ordering for communication channels, Inf. Control 1, 390 (1958).
  31. D. Blackwell, Equivalent Comparisons of Experiments, Ann. Math. Stat. 24, 265 (1953).
  32. A. Winter and S. Massar, Compression of quantum-measurement operations, Phys. Rev. A 64, 012311 (2001), arXiv:quant-ph/0012128 [quant-ph] .
  33. J. Körner and K. Marton, Comparison of two noisy channels, in Colloquia Mathematica Societatis János Bolyai: 16. Topics in Information Theory (North-Holland Publishing Co., 1975).
  34. F. Buscemi, Comparison of quantum statistical models: Equivalent conditions for sufficiency, Comm. Math. Phys. 310, 625 (2010), arXiv:1004.3794 [quant-ph] .
  35. P. Bergmans, Random coding theorem for broadcast channels with degraded components, IEEE Trans. Inf. Theory 19, 197 (1973).
  36. F. Buscemi, N. Datta, and S. Strelchuk, Game-theoretic characterization of antidegradable channels, J. Math. Phys. 55, 092202 (2014), arXiv:1404.0277 [quant-ph] .
  37. E. Torgersen, Comparison of Statistical Experiments, Encyclopedia of Mathematics and its Applications (Cambridge University Press, 1991).
  38. E. Shmaya, Comparison of information structures and completely positive maps, J. Phys. A: Math. Gen. 38, 9717 (2005), arXiv:quant-ph/0410233 [quant-ph] .
  39. F. Buscemi, Comparison of noisy channels and reverse data-processing theorems, in 2017 IEEE Information Theory Workshop (ITW) (2017) pp. 489–493, arXiv:1803.02945 [cs.IT] .
  40. Z.-W. Liu and A. Winter, Resource theories of quantum channels and the universal role of resource erasure,   (2019), arXiv:1904.04201 [quant-ph] .
  41. P. Skrzypczyk, I. Šupić, and D. Cavalcanti, All Sets of Incompatible Measurements give an Advantage in Quantum State Discrimination, Phys. Rev. Lett.  122, 130403 (2019), arXiv:1901.00816 [quant-ph] .
  42. A. Jencova, A general theory of comparison of quantum channels (and beyond), IEEE Trans. Inf. Theory 67, 3945 (2021), arXiv:2002.04240 [quant-ph] .
  43. A. F. C. Gomes and M. A. T. Figueiredo, Orders between Channels and Implications for Partial Information Decomposition, Entropy 25, 975 (2023), arXiv:2305.06021 [cs.IT] .
  44. F. Buscemi, K. Kobayashi, and S. Minagawa, A complete and operational resource theory of measurement sharpness,   (2023), arXiv:2303.07737 [quant-ph] .
  45. C. E. Shannon, A mathematical theory of communication, The Bell System Technical Journal 27, 379 (1948).
  46. S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics 22, 79 (1951).
  47. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing) (Wiley-Interscience, USA, 2006).
  48. D. Šafránek, J. M. Deutsch, and A. Aguirre, Quantum coarse-grained entropy and thermodynamics, Phys. Rev. A 99, 010101 (2019a), arXiv:1707.09722 [quant-ph] .
  49. D. Šafránek, J. M. Deutsch, and A. Aguirre, Quantum coarse-grained entropy and thermalization in closed systems, Phys. Rev. A 99, 012103 (2019b), arXiv:1803.00665 [quant-ph] .
  50. D. Šafránek, A. Aguirre, and J. M. Deutsch, Classical dynamical coarse-grained entropy and comparison with the quantum version, Phys. Rev. E 102, 032106 (2020), arXiv:1905.03841 [cond-mat.stat-mech] .
  51. P. Strasberg and A. Winter, First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy, PRX Quantum 2, 030202 (2021).
  52. F. Hiai and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Commun. Math. Phys. 143, 99 (1991).
  53. M. Hayashi, Asymptotics of quantum relative entropy from a representation theoretical viewpoint, J. Phys. A Math. Gen. 34, 3413 (2001), arXiv:quant-ph/9704040 [quant-ph] .
  54. A. Wehrl, On the relation between classical and quantum-mechanical entropy, Reports on Mathematical Physics 16, 353 (1979).
  55. A. Riera-Campeny, A. Sanpera, and P. Strasberg, Quantum systems correlated with a finite bath: Nonequilibrium dynamics and thermodynamics, PRX Quantum 2, 010340 (2021), arXiv:2008.02184 [quant-ph] .
  56. P. Strasberg, M. García Díaz, and A. Riera-Campeny, Clausius inequality for finite baths reveals universal efficiency improvements, Phys. Rev. E 104, L022103 (2021), arXiv:2012.03262 [quant-ph] .
  57. L. Amadei, H. Liu, and A. Perez, Unitarity and information in quantum gravity: a simple example, Front. Astron. Space Sci. 8, 46 (2021), arXiv:1912.09750 [gr-qc] .
  58. R. Hamazaki, Speed Limits for Macroscopic Transitions, PRX Quantum 3, 020319 (2022), arXiv:2110.09716 [cond-mat.stat-mech] .
  59. R. Modak and S. Aravinda, Observational entropic study of Anderson localization, arXiv:2209.10273 [quant-ph] (2022), preprint.
  60. A. Stokes, Nonconjugate quantum subsystems, Phys. Rev. E 106, 034111 (2022), arXiv:2106.11017 [quant-ph] .
  61. P. Strasberg, Quantum Stochastic Thermodynamics: Foundations and Selected Applications (Oxford University Press, 2022).
  62. D. Šafránek, D. Rosa, and F. Binder, Work extraction from unknown quantum sources, arXiv:2209.11076 [quant-ph] (2022), preprint.
  63. S. PG, R. Modak, and S. Aravinda, Witnessing quantum chaos using observational entropy, arXiv:2212.01585 [quant-ph] (2022), preprint.
  64. X. Zhou, Dynamical behavior of quantum correlation entropy under the noisy quantum channel for multiqubit systems, Int. J. Theor. Phys. 62, 23 (2023).
  65. M. Piani, Relative Entropy of Entanglement and Restricted Measurements, Phys. Rev. Lett.  103, 160504 (2009), arXiv:0904.2705 [quant-ph] .
  66. X. Zhou and Z.-J. Zheng, Relations between the quantum correlation entropy and quantum discord for X-states in multipartite systems, EPJ Plus 137, 625 (2022a).
  67. X. Zhou and Z.-J. Zheng, Relations between the observational entropy and Rényi information measures, Quantum Inf. Processing 21, 228 (2022b).
  68. D. Šafránek and D. Rosa, Expectation values from any quantum measurement, arXiv:2301.10428 [quant-ph] (2023), preprint.
  69. J. Schindler, D. Šafránek, and A. Aguirre, Quantum correlation entropy, Phys. Rev. A 102, 052407 (2020), arXiv:2005.05408 [quant-ph] .
  70. J. Schindler and A. Winter, Continuity bounds on observational entropy and measured relative entropies, J. Math. Phys. 64, 092201 (2023), arXiv:2302.00400 [quant-ph] .
  71. J. von Neumann, Proof of the ergodic theorem and the H-theorem in quantum mechanics. Translation of: Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, EPJ H 35, 201 (2010), arXiv:1003.2133 [physics.hist-ph] .
  72. N. G. Van Kampen, Quantum statistics of irreversible processes, Physica 20, 603 (1954).
  73. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955).
  74. A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50, 221 (1978).
  75. B. Coecke, T. Fritz, and R. W. Spekkens, A mathematical theory of resources, Inf. Comp. 250, 59 (2016), quantum Physics and Logic, arXiv:1902.08490 [quant-ph] .
  76. D. Šafránek and J. Thingna, Quantifying information extraction using generalized quantum measurements, Phys. Rev. A 108, 032413 (2023), arXiv:2007.07246 [quant-ph] .
  77. K. M. R. Audenaert and J. Eisert, Continuity bounds on the quantum relative entropy, J. Math. Phys. 46, 102104 (2005), arXiv:quant-ph/0503218 [quant-ph] .
  78. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1985).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube