Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Statistical Inference for Bures-Wasserstein Flows (2310.13764v2)

Published 20 Oct 2023 in stat.ME, math.ST, and stat.TH

Abstract: We develop a statistical framework for conducting inference on collections of time-varying covariance operators (covariance flows) over a general, possibly infinite dimensional, Hilbert space. We model the intrinsically non-linear structure of covariances by means of the Bures-Wasserstein metric geometry. We make use of the Riemmanian-like structure induced by this metric to define a notion of mean and covariance of a random flow, and develop an associated Karhunen-Lo`eve expansion. We then treat the problem of estimation and construction of functional principal components from a finite collection of covariance flows, observed fully or irregularly. Our theoretical results are motivated by modern problems in functional data analysis, where one observes operator-valued random processes -- for instance when analysing dynamic functional connectivity and fMRI data, or when analysing multiple functional time series in the frequency domain. Nevertheless, our framework is also novel in the finite-dimensions (matrix case), and we demonstrate what simplifications can be afforded then. We illustrate our methodology by means of simulations and data analyses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.