2000 character limit reached
Quasi Manhattan Wasserstein Distance (2310.12498v1)
Published 19 Oct 2023 in cs.LG, cs.NA, and math.NA
Abstract: The Quasi Manhattan Wasserstein Distance (QMWD) is a metric designed to quantify the dissimilarity between two matrices by combining elements of the Wasserstein Distance with specific transformations. It offers improved time and space complexity compared to the Manhattan Wasserstein Distance (MWD) while maintaining accuracy. QMWD is particularly advantageous for large datasets or situations with limited computational resources. This article provides a detailed explanation of QMWD, its computation, complexity analysis, and comparisons with WD and MWD.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.