Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Search for Non-Tensorial Gravitational-Wave Backgrounds in the NANOGrav 15-Year Data Set (2310.11238v3)

Published 17 Oct 2023 in astro-ph.CO, gr-qc, hep-ph, and hep-th

Abstract: The recent detection of a stochastic signal in the NANOGrav 15-year data set has aroused great interest in uncovering its origin. However, the evidence for the Hellings-Downs correlations, a key signature of the gravitational-wave background (GWB) predicted by general relativity, remains inconclusive. In this letter, we search for an isotropic non-tensorial GWB, allowed by general metric theories of gravity, in the NANOGrav 15-year data set. Our analysis reveals a Bayes factor of approximately 2.5, comparing the quadrupolar (tensor transverse, TT) correlations to the scalar transverse (ST) correlations, suggesting that the ST correlations provide a comparable explanation for the observed stochastic signal in the NANOGrav data. We obtain the median and the $90\%$ equal-tail amplitudes as $\mathcal{A}\mathrm{ST} = 7.8{+5.1}{-3.5} \times 10{-15}$ at the frequency of 1/year. Furthermore, we find that the vector longitudinal (VL) and scalar longitudinal (SL) correlations are weakly and strongly disfavoured by data, respectively, yielding upper limits on the amplitudes: $\mathcal{A}\mathrm{VL}{95\%} \lesssim 1.7 \times 10{-15}$ and $\mathcal{A}\mathrm{SL}{95\%} \lesssim 7.4 \times 10{-17}$. Lastly, we fit the NANOGrav data with the general transverse (GT) correlations parameterized by a free parameter $\alpha$. Our analysis yields $\alpha=1.74{+1.18}_{-1.41}$, thus excluding both the TT ($\alpha=3$) and ST ($\alpha=0$) models at the $90\%$ confidence level.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (102)
  1. M. V. Sazhin, “Opportunities for detecting ultralong gravitational waves,” Soviet Astronomy 22, 36–38 (1978).
  2. Steven L. Detweiler, “Pulsar timing measurements and the search for gravitational waves,” Astrophys. J. 234, 1100–1104 (1979).
  3. R. S. Foster and D. C. Backer, “Constructing a pulsar timing array,” Astrophys. J.  361, 300–308 (1990).
  4. Michael Kramer and David J. Champion (EPTA), “The European Pulsar Timing Array and the Large European Array for Pulsars,” Class. Quant. Grav. 30, 224009 (2013).
  5. Maura A. McLaughlin, “The North American Nanohertz Observatory for Gravitational Waves,” Class. Quant. Grav. 30, 224008 (2013), arXiv:1310.0758 [astro-ph.IM] .
  6. R. N. Manchester et al., “The Parkes Pulsar Timing Array Project,” Publ. Astron. Soc. Austral. 30, 17 (2013), arXiv:1210.6130 [astro-ph.IM] .
  7. Bhal Chandra Joshi, Prakash Arumugasamy, Manjari Bagchi, et al., “Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics,” Journal of Astrophysics and Astronomy 39, 51 (2018).
  8. G. Hobbs et al., “The international pulsar timing array project: using pulsars as a gravitational wave detector,” Class. Quant. Grav. 27, 084013 (2010), arXiv:0911.5206 [astro-ph.SR] .
  9. R. N. Manchester, “The International Pulsar Timing Array,” Class. Quant. Grav. 30, 224010 (2013), arXiv:1309.7392 [astro-ph.IM] .
  10. K. J. Lee, “Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes,” in Frontiers in Radio Astronomy and FAST Early Sciences Symposium 2015, Astronomical Society of the Pacific Conference Series, Vol. 502, edited by L. Qain and D. Li (2016) p. 19.
  11. Matthew T. Miles et al., “The MeerKAT Pulsar Timing Array: first data release,” Mon. Not. Roy. Astron. Soc. 519, 3976–3991 (2023), arXiv:2212.04648 [astro-ph.HE] .
  12. Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars,” Astrophys. J. Lett. 951, L9 (2023a), arXiv:2306.16217 [astro-ph.HE] .
  13. Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background,” Astrophys. J. Lett. 951, L8 (2023b), arXiv:2306.16213 [astro-ph.HE] .
  14. J. Antoniadis et al. (EPTA), “The second data release from the European Pulsar Timing Array - I. The dataset and timing analysis,” Astron. Astrophys. 678, A48 (2023a), arXiv:2306.16224 [astro-ph.HE] .
  15. J. Antoniadis et al. (EPTA, InPTA:), “The second data release from the European Pulsar Timing Array - III. Search for gravitational wave signals,” Astron. Astrophys. 678, A50 (2023b), arXiv:2306.16214 [astro-ph.HE] .
  16. Andrew Zic et al., “The Parkes Pulsar Timing Array third data release,” Publ. Astron. Soc. Austral. 40, e049 (2023), arXiv:2306.16230 [astro-ph.HE] .
  17. Daniel J. Reardon et al., “Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array,” Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  18. Heng Xu et al., “Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I,” Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  19. R. w. Hellings and G. s. Downs, “UPPER LIMITS ON THE ISOTROPIC GRAVITATIONAL RADIATION BACKGROUND FROM PULSAR TIMING ANALYSIS,” Astrophys. J. Lett. 265, L39–L42 (1983).
  20. Jun Li, Zu-Cheng Chen,  and Qing-Guo Huang, “Measuring the tilt of primordial gravitational-wave power spectrum from observations,” Sci. China Phys. Mech. Astron. 62, 110421 (2019), [Erratum: Sci.China Phys.Mech.Astron. 64, 250451 (2021)], arXiv:1907.09794 [astro-ph.CO] .
  21. Zu-Cheng Chen, Chen Yuan,  and Qing-Guo Huang, “Pulsar Timing Array Constraints on Primordial Black Holes with NANOGrav 11-Year Dataset,” Phys. Rev. Lett. 124, 251101 (2020), arXiv:1910.12239 [astro-ph.CO] .
  22. Sunny Vagnozzi, “Implications of the NANOGrav results for inflation,” Mon. Not. Roy. Astron. Soc. 502, L11–L15 (2021), arXiv:2009.13432 [astro-ph.CO] .
  23. Micol Benetti, Leila Lobato Graef,  and Sunny Vagnozzi, “Primordial gravitational waves from NANOGrav: A broken power-law approach,” Phys. Rev. D 105, 043520 (2022), arXiv:2111.04758 [astro-ph.CO] .
  24. Zu-Cheng Chen, Yu-Mei Wu,  and Qing-Guo Huang, “Search for the Gravitational-wave Background from Cosmic Strings with the Parkes Pulsar Timing Array Second Data Release,” Astrophys. J. 936, 20 (2022a), arXiv:2205.07194 [astro-ph.CO] .
  25. Amjad Ashoorioon, Kazem Rezazadeh,  and Abasalt Rostami, “NANOGrav signal from the end of inflation and the LIGO mass and heavier primordial black holes,” Phys. Lett. B 835, 137542 (2022), arXiv:2202.01131 [astro-ph.CO] .
  26. Yu-Mei Wu, Zu-Cheng Chen, Qing-Guo Huang, Xingjiang Zhu, N. D. Ramesh Bhat, Yi Feng, George Hobbs, Richard N. Manchester, Christopher J. Russell,  and R. M. Shannon (PPTA), “Constraining ultralight vector dark matter with the Parkes Pulsar Timing Array second data release,” Phys. Rev. D 106, L081101 (2022a), arXiv:2210.03880 [astro-ph.CO] .
  27. Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Search for stochastic gravitational-wave background from massive gravity in the NANOGrav 12.5-year dataset,” Phys. Rev. D 107, 042003 (2023a), arXiv:2302.00229 [gr-qc] .
  28. M. Falxa et al. (IPTA), “Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array,” Mon. Not. Roy. Astron. Soc. 521, 5077–5086 (2023), arXiv:2303.10767 [gr-qc] .
  29. Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Pulsar timing residual induced by ultralight tensor dark matter,” JCAP 09, 021 (2023b), arXiv:2305.08091 [hep-ph] .
  30. Virgile Dandoy, Valerie Domcke,  and Fabrizio Rompineve, “Search for scalar induced gravitational waves in the international pulsar timing array data release 2 and NANOgrav 12.5 years datasets,” SciPost Phys. Core 6, 060 (2023), arXiv:2302.07901 [astro-ph.CO] .
  31. Eric Madge, Enrico Morgante, Cristina Puchades-Ibáñez, Nicklas Ramberg, Wolfram Ratzinger, Sebastian Schenk,  and Pedro Schwaller, “Primordial gravitational waves in the nano-Hertz regime and PTA data — towards solving the GW inverse problem,” JHEP 10, 171 (2023), arXiv:2306.14856 [hep-ph] .
  32. Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Constraints on the velocity of gravitational waves from NANOGrav 15-year data set,”  (2023a), arXiv:2310.08366 [astro-ph.CO] .
  33. Yu-Mei Wu, Zu-Cheng Chen, Yan-Chen Bi,  and Qing-Guo Huang, “Constraining the graviton mass with the NANOGrav 15 year data set,” Class. Quant. Grav. 41, 075002 (2024a), arXiv:2310.07469 [astro-ph.CO] .
  34. Adeela Afzal et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Search for Signals from New Physics,” Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  35. J. Antoniadis et al. (EPTA), “The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe,”   (2023c), arXiv:2306.16227 [astro-ph.CO] .
  36. Stephen F. King, Danny Marfatia,  and Moinul Hossain Rahat, “Toward distinguishing Dirac from Majorana neutrino mass with gravitational waves,” Phys. Rev. D 109, 035014 (2024), arXiv:2306.05389 [hep-ph] .
  37. Xuce Niu and Moinul Hossain Rahat, “NANOGrav signal from axion inflation,” Phys. Rev. D 108, 115023 (2023), arXiv:2307.01192 [hep-ph] .
  38. Ido Ben-Dayan, Utkarsh Kumar, Udaykrishna Thattarampilly,  and Amresh Verma, “Probing the early Universe cosmology with NANOGrav: Possibilities and limitations,” Phys. Rev. D 108, 103507 (2023), arXiv:2307.15123 [astro-ph.CO] .
  39. Sunny Vagnozzi, “Inflationary interpretation of the stochastic gravitational wave background signal detected by pulsar timing array experiments,” JHEAp 39, 81–98 (2023), arXiv:2306.16912 [astro-ph.CO] .
  40. Chengjie Fu, Jing Liu, Xing-Yu Yang, Wang-Wei Yu,  and Yawen Zhang, “Explaining pulsar timing array observations with primordial gravitational waves in parity-violating gravity,” Phys. Rev. D 109, 063526 (2024), arXiv:2308.15329 [astro-ph.CO] .
  41. G. Agazie et al. (International Pulsar Timing Array), “Comparing recent PTA results on the nanohertz stochastic gravitational wave background,”   (2023c), arXiv:2309.00693 [astro-ph.HE] .
  42. Spyros Basilakos, Dimitri V. Nanopoulos, Theodoros Papanikolaou, Emmanuel N. Saridakis,  and Charalampos Tzerefos, “Induced gravitational waves from flipped SU(5) superstring theory at nHz,” Phys. Lett. B 849, 138446 (2024), arXiv:2309.15820 [astro-ph.CO] .
  43. Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Cosmological interpretation for the stochastic signal in pulsar timing arrays,” Sci. China Phys. Mech. Astron. 67, 240412 (2024b), arXiv:2307.03141 [astro-ph.CO] .
  44. John Ellis, Malcolm Fairbairn, Gabriele Franciolini, Gert Hütsi, Antonio Iovino, Marek Lewicki, Martti Raidal, Juan Urrutia, Ville Vaskonen,  and Hardi Veermäe, “What is the source of the PTA GW signal?” Phys. Rev. D 109, 023522 (2024a), arXiv:2308.08546 [astro-ph.CO] .
  45. Daniel G. Figueroa, Mauro Pieroni, Angelo Ricciardone,  and Peera Simakachorn, “Cosmological Background Interpretation of Pulsar Timing Array Data,”   (2023), arXiv:2307.02399 [astro-ph.CO] .
  46. Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background,” Astrophys. J. Lett. 952, L37 (2023d), arXiv:2306.16220 [astro-ph.HE] .
  47. John Ellis, Malcolm Fairbairn, Gert Hütsi, Juhan Raidal, Juan Urrutia, Ville Vaskonen,  and Hardi Veermäe, “Gravitational waves from supermassive black hole binaries in light of the NANOGrav 15-year data,” Phys. Rev. D 109, L021302 (2024b), arXiv:2306.17021 [astro-ph.CO] .
  48. Yan-Chen Bi, Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Implications for the supermassive black hole binaries from the NANOGrav 15-year data set,” Sci. China Phys. Mech. Astron. 66, 120402 (2023b), arXiv:2307.00722 [astro-ph.CO] .
  49. Naoya Kitajima, Junseok Lee, Kai Murai, Fuminobu Takahashi,  and Wen Yin, “Gravitational Waves from Domain Wall Collapse, and Application to Nanohertz Signals with QCD-coupled Axions,”   (2023), arXiv:2306.17146 [hep-ph] .
  50. E. Babichev, D. Gorbunov, S. Ramazanov, R. Samanta,  and A. Vikman, “NANOGrav spectral index γ𝛾\gammaitalic_γ=3 from melting domain walls,” Phys. Rev. D 108, 123529 (2023), arXiv:2307.04582 [hep-ph] .
  51. Naoya Kitajima and Kazunori Nakayama, “Nanohertz gravitational waves from cosmic strings and dark photon dark matter,” Phys. Lett. B 846, 138213 (2023), arXiv:2306.17390 [hep-ph] .
  52. John Ellis, Marek Lewicki, Chunshan Lin,  and Ville Vaskonen, “Cosmic superstrings revisited in light of NANOGrav 15-year data,” Phys. Rev. D 108, 103511 (2023), arXiv:2306.17147 [astro-ph.CO] .
  53. Waqas Ahmed, Talal Ahmed Chowdhury, Salah Nasri,  and Shaikh Saad, “Gravitational waves from metastable cosmic strings in the Pati-Salam model in light of new pulsar timing array data,” Phys. Rev. D 109, 015008 (2024), arXiv:2308.13248 [hep-ph] .
  54. Andrea Addazi, Yi-Fu Cai, Antonino Marciano,  and Luca Visinelli, “Have pulsar timing array methods detected a cosmological phase transition?” Phys. Rev. D 109, 015028 (2024), arXiv:2306.17205 [astro-ph.CO] .
  55. Peter Athron, Andrew Fowlie, Chih-Ting Lu, Lachlan Morris, Lei Wu, Yongcheng Wu,  and Zhongxiu Xu, “Can supercooled phase transitions explain the gravitational wave background observed by pulsar timing arrays?”   (2023), arXiv:2306.17239 [hep-ph] .
  56. Yang Xiao, Jin Min Yang,  and Yang Zhang, “Implications of nano-Hertz gravitational waves on electroweak phase transition in the singlet dark matter model,” Sci. Bull. 68, 3158–3164 (2023), arXiv:2307.01072 [hep-ph] .
  57. Katsuya T. Abe and Yuichiro Tada, “Translating nano-Hertz gravitational wave background into primordial perturbations taking account of the cosmological QCD phase transition,” Phys. Rev. D 108, L101304 (2023), arXiv:2307.01653 [astro-ph.CO] .
  58. Yann Gouttenoire, “First-Order Phase Transition Interpretation of Pulsar Timing Array Signal Is Consistent with Solar-Mass Black Holes,” Phys. Rev. Lett. 131, 171404 (2023), arXiv:2307.04239 [hep-ph] .
  59. Gabriele Franciolini, Antonio Iovino, Junior., Ville Vaskonen,  and Hardi Veermae, “Recent Gravitational Wave Observation by Pulsar Timing Arrays and Primordial Black Holes: The Importance of Non-Gaussianities,” Phys. Rev. Lett. 131, 201401 (2023), arXiv:2306.17149 [astro-ph.CO] .
  60. Jia-Heng Jin, Zu-Cheng Chen, Zhu Yi, Zhi-Qiang You, Lang Liu,  and You Wu, “Confronting sound speed resonance with pulsar timing arrays,” JCAP 09, 016 (2023), arXiv:2307.08687 [astro-ph.CO] .
  61. Lang Liu, Zu-Cheng Chen,  and Qing-Guo Huang, “Probing the equation of state of the early Universe with pulsar timing arrays,” JCAP 11, 071 (2023a), arXiv:2307.14911 [astro-ph.CO] .
  62. Zhu Yi, Zhi-Qiang You, You Wu, Zu-Cheng Chen,  and Lang Liu, “Exploring the NANOGrav Signal and Planet-mass Primordial Black Holes through Higgs Inflation,”   (2023), arXiv:2308.14688 [astro-ph.CO] .
  63. Keisuke Harigaya, Keisuke Inomata,  and Takahiro Terada, “Induced gravitational waves with kination era for recent pulsar timing array signals,” Phys. Rev. D 108, 123538 (2023), arXiv:2309.00228 [astro-ph.CO] .
  64. Lang Liu, Zu-Cheng Chen,  and Qing-Guo Huang, “Implications for the non-Gaussianity of curvature perturbation from pulsar timing arrays,” Phys. Rev. D 109, L061301 (2024), arXiv:2307.01102 [astro-ph.CO] .
  65. Lang Liu, You Wu,  and Zu-Cheng Chen, “Simultaneously probing the sound speed and equation of state of the early Universe with pulsar timing arrays,”   (2023b), arXiv:2310.16500 [astro-ph.CO] .
  66. Zu-Cheng Chen and Qing-Guo Huang, “Merger Rate Distribution of Primordial-Black-Hole Binaries,” Astrophys. J. 864, 61 (2018), arXiv:1801.10327 [astro-ph.CO] .
  67. M. Bousder, A. Riadsolh, A. El Fatimy, M. El Belkacemi,  and H. Ez-Zahraouy, “Implications of the NANOGrav results for primordial black holes and Hubble tension,”  (2023), arXiv:2307.10940 [gr-qc] .
  68. Yann Gouttenoire, Sokratis Trifinopoulos, Georgios Valogiannis,  and Miguel Vanvlasselaer, “Scrutinizing the Primordial Black Holes Interpretation of PTA Gravitational Waves and JWST Early Galaxies,”   (2023), arXiv:2307.01457 [astro-ph.CO] .
  69. Bruce Allen, Sanjeev Dhurandhar, Yashwant Gupta, Maura McLaughlin, Priyamvada Natarajan, Ryan M. Shannon, Eric Thrane,  and Alberto Vecchio, “The International Pulsar Timing Array checklist for the detection of nanohertz gravitational waves,”   (2023), arXiv:2304.04767 [astro-ph.IM] .
  70. K. J. Lee, F. A. Jenet,  and Richard H. Price, “Pulsar Timing as a Probe of Non-Einsteinian Polarizations of Gravitational Waves,” Astrophys. J.  685, 1304–1319 (2008).
  71. Sydney J. Chamberlin and Xavier Siemens, “Stochastic backgrounds in alternative theories of gravity: overlap reduction functions for pulsar timing arrays,” Phys. Rev. D 85, 082001 (2012), arXiv:1111.5661 [astro-ph.HE] .
  72. Jonathan R. Gair, Joseph D. Romano,  and Stephen R. Taylor, “Mapping gravitational-wave backgrounds of arbitrary polarisation using pulsar timing arrays,” Phys. Rev. D 92, 102003 (2015), arXiv:1506.08668 [gr-qc] .
  73. Adrian Boîtier, Shubhanshu Tiwari, Lionel Philippoz,  and Philippe Jetzer, “Pulse redshift of pulsar timing array signals for all possible gravitational wave polarizations in modified general relativity,” Phys. Rev. D 102, 064051 (2020), arXiv:2008.13520 [gr-qc] .
  74. Reginald Christian Bernardo and Kin-Wang Ng, “Looking out for the Galileon in the nanohertz gravitational wave sky,” Phys. Lett. B 841, 137939 (2023a), arXiv:2206.01056 [astro-ph.CO] .
  75. Reginald Christian Bernardo and Kin-Wang Ng, “Stochastic gravitational wave background phenomenology in a pulsar timing array,” Phys. Rev. D 107, 044007 (2023b), arXiv:2208.12538 [gr-qc] .
  76. Zu-Cheng Chen, Chen Yuan,  and Qing-Guo Huang, “Non-tensorial gravitational wave background in NANOGrav 12.5-year data set,” Sci. China Phys. Mech. Astron. 64, 120412 (2021), arXiv:2101.06869 [astro-ph.CO] .
  77. Zaven Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background,” Astrophys. J. Lett. 923, L22 (2021), arXiv:2109.14706 [gr-qc] .
  78. Yu-Mei Wu, Zu-Cheng Chen,  and Qing-Guo Huang, “Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release,” Astrophys. J. 925, 37 (2022b), arXiv:2108.10518 [astro-ph.CO] .
  79. Zu-Cheng Chen, Yu-Mei Wu,  and Qing-Guo Huang, “Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release,” Commun. Theor. Phys. 74, 105402 (2022b), arXiv:2109.00296 [astro-ph.CO] .
  80. Neil J. Cornish, Logan O’Beirne, Stephen R. Taylor,  and Nicolás Yunes, “Constraining alternative theories of gravity using pulsar timing arrays,” Phys. Rev. Lett. 120, 181101 (2018), arXiv:1712.07132 [gr-qc] .
  81. Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. Lett. 951, L50 (2023e), arXiv:2306.16222 [astro-ph.HE] .
  82. Eric Thrane and Joseph D. Romano, “Sensitivity curves for searches for gravitational-wave backgrounds,” Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  83. N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  84. Z. Arzoumanian et al. (NANOGrav), “The NANOGrav Nine-year Data Set: Limits on the Isotropic Stochastic Gravitational Wave Background,” Astrophys. J. 821, 13 (2016), arXiv:1508.03024 [astro-ph.GA] .
  85. Ryan S. Park, William M. Folkner, James G. Williams,  and Dale H. Boggs, “The jpl planetary and lunar ephemerides de440 and de441,” The Astronomical Journal 161, 105 (2021).
  86. Z. Arzoumanian et al. (NANOGRAV), “The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background,” Astrophys. J. 859, 47 (2018), arXiv:1801.02617 [astro-ph.HE] .
  87. Zaven Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background,” Astrophys. J. Lett. 905, L34 (2020), arXiv:2009.04496 [astro-ph.HE] .
  88. Justin A. Ellis, Michele Vallisneri, Stephen R. Taylor,  and Paul T. Baker, “Enterprise: Enhanced numerical toolbox enabling a robust pulsar inference suite,” Zenodo (2020).
  89. Stephen R. Taylor, Paul T. Baker, Jeffrey S. Hazboun, Joseph Simon,  and Sarah J. Vigeland, “enterprise_extensions,”  (2021), v2.2.0.
  90. Bradley P. Carlin and Siddhartha Chib, “Bayesian model choice via markov chain monte carlo methods,” Journal of the Royal Statistical Society. Series B (Methodological) 57, 473–484 (1995).
  91. Simon J. Godsill, “On the relationship between markov chain monte carlo methods for model uncertainty,” Journal of Computational and Graphical Statistics 10, 230–248 (2001).
  92. Sonke Hee, Will Handley, Mike P. Hobson,  and Anthony N. Lasenby, “Bayesian model selection without evidences: application to the dark energy equation-of-state,” Mon. Not. Roy. Astron. Soc. 455, 2461–2473 (2016), arXiv:1506.09024 [astro-ph.CO] .
  93. Stephen R. Taylor, Rutger van Haasteren,  and Alberto Sesana, “From Bright Binaries To Bumpy Backgrounds: Mapping Realistic Gravitational Wave Skies With Pulsar-Timing Arrays,” Phys. Rev. D 102, 084039 (2020), arXiv:2006.04810 [astro-ph.IM] .
  94. Justin Ellis and Rutger van Haasteren, “jellis18/ptmcmcsampler: Official release,”  (2017).
  95. K. Aggarwal et al., “The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries,” Astrophys. J. 880, 2 (2019), arXiv:1812.11585 [astro-ph.GA] .
  96. Bruce Allen, “Variance of the Hellings-Downs correlation,” Phys. Rev. D 107, 043018 (2023), arXiv:2205.05637 [gr-qc] .
  97. Bruce Allen and Joseph D. Romano, “Hellings and Downs correlation of an arbitrary set of pulsars,” Phys. Rev. D 108, 043026 (2023), arXiv:2208.07230 [gr-qc] .
  98. Reginald Christian Bernardo and Kin-Wang Ng, “Pulsar and cosmic variances of pulsar timing-array correlation measurements of the stochastic gravitational wave background,” JCAP 11, 046 (2022), arXiv:2209.14834 [gr-qc] .
  99. Reginald Christian Bernardo and Kin-Wang Ng, “Testing gravity with cosmic variance-limited pulsar timing array correlations,”   (2023c), arXiv:2306.13593 [gr-qc] .
  100. Reginald Christian Bernardo and Kin-Wang Ng, “Hunting the stochastic gravitational wave background in pulsar timing array cross correlations through theoretical uncertainty,” JCAP 08, 028 (2023d), arXiv:2304.07040 [gr-qc] .
  101. Reginald Christian Bernardo and Kin-Wang Ng, “Beyond the Hellings-Downs curve: Non-Einsteinian gravitational waves in pulsar timing array correlations,”   (2023e), arXiv:2310.07537 [gr-qc] .
  102. Gabriella Agazie et al. (NANOGrav), “The NANOGrav 15-year data set: Search for Transverse Polarization Modes in the Gravitational-Wave Background,”   (2023f), arXiv:2310.12138 [gr-qc] .
Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.