Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EXMODD: An EXplanatory Multimodal Open-Domain Dialogue dataset (2310.10967v1)

Published 17 Oct 2023 in cs.CL, cs.AI, and cs.HC

Abstract: The need for high-quality data has been a key issue hindering the research of dialogue tasks. Recent studies try to build datasets through manual, web crawling, and large pre-trained models. However, man-made data is expensive and data collected from the internet often includes generic responses, meaningless statements, and toxic dialogues. Automatic data generation through large models is a cost-effective method, but for open-domain multimodal dialogue tasks, there are still three drawbacks: 1) There is currently no open-source large model that can accept multimodal input; 2) The content generated by the model lacks interpretability; 3) The generated data is usually difficult to quality control and require extensive resource to collect. To alleviate the significant human and resource expenditure in data collection, we propose a Multimodal Data Construction Framework (MDCF). MDCF designs proper prompts to spur the large-scale pre-trained LLM to generate well-formed and satisfactory content. Additionally, MDCF also automatically provides explanation for a given image and its corresponding dialogue, which can provide a certain degree of interpretability and facilitate manual follow-up quality inspection. Based on this, we release an Explanatory Multimodal Open-Domain dialogue dataset (EXMODD). Experiments indicate a positive correlation between the model's ability to generate accurate understandings and high-quality responses. Our code and data can be found at https://github.com/poplpr/EXMODD.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hang Yin (77 papers)
  2. Pinren Lu (1 paper)
  3. Ziang Li (16 papers)
  4. Bin Sun (74 papers)
  5. Kan Li (54 papers)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub