Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
72 tokens/sec
GPT-4o
61 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controllable Dialogue Simulation with In-Context Learning (2210.04185v4)

Published 9 Oct 2022 in cs.CL and cs.AI

Abstract: Building dialogue systems requires a large corpus of annotated dialogues. Such datasets are usually created via crowdsourcing, which is expensive and time-consuming. In this paper, we propose \textsc{Dialogic}, a novel dialogue simulation method based on LLM in-context learning to automate dataset creation. Seeded with a few annotated dialogues, \textsc{Dialogic} automatically selects in-context examples for demonstration and prompts GPT-3 to generate new dialogues and annotations in a controllable way. Our method can rapidly expand a small set of dialogue data with minimum or zero \textit{human involvement} and \textit{parameter update} and is thus much more cost-efficient and time-saving than crowdsourcing. Experimental results on the MultiWOZ dataset demonstrate that training a model on the simulated dialogues leads to even better performance than using the same amount of human-generated dialogues under the challenging low-resource settings, with as few as 85 dialogues as a seed. When enough data is available, our method can still serve as an effective data augmentation method. Human evaluation results also show that our simulated dialogues have near-human fluency and annotation accuracy. The code and data are available at \textbf{\url{https://github.com/Leezekun/dialogic}}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Zekun Li (73 papers)
  2. Wenhu Chen (134 papers)
  3. Shiyang Li (24 papers)
  4. Hong Wang (254 papers)
  5. Jing Qian (81 papers)
  6. Xifeng Yan (52 papers)
Citations (38)