Is the public goods game a chaotic system? (2310.10703v1)
Abstract: This work deals with the time evolution of the Hamming distance density for the public goods game. We consider distinct possibilities for this game, which are exactly described by a function called $q$-exponential, that represents a deformation of the usual exponential function parametrized by $q$, suggesting that the system belongs to the class of weakly-chaotic systems when $q < 1$. These possibilities are related to the amount of players allowed in each game.
- \NameChen X. Fu F. \REVIEWFrontiers in Physics62018.
- \NameGlaubitz A. Fu F. \REVIEWProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences4762020.
- \NameKirkup B. C. Riley M. A. \REVIEWNature4282004412.
- \NameReichenbach T., Mobilia M. Frey E. \REVIEWNature44820071046.
- \NameHamming R. W. \REVIEWBell System Technical Journal291950147.
- \NameSantos F. C., Santos M. D. Pacheco J. M. \REVIEWNature4542008213.
- \NameSzolnoki A., Perc M. Szabó G. \REVIEWPhys. Rev. E802009056109.
- \NameSzolnoki A., Szabó G. Czakó L. \REVIEWPhys. Rev. E842011046106.
- \NameSzolnoki A. Perc M. \REVIEWPhys. Rev. E842011047102.
- \NameWang J. Xia C. \REVIEWEurophysics Letters141202321001.
- \NameSzabó G. Fáth G. \REVIEWPhysics Reports446200797.
- \NameTirnakli U. Borges E. P. \REVIEWScientific Reports6201623644.
- \NameTsallis C. \REVIEWJournal of Statistical Physics521988479.
- \NameRapoport A. Chammah A. \BookPrisoner’s Dilemma: A Study in Conflict and Cooperation Ann Arbor paperbacks (University of Michigan Press) 1965.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.