Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Introduction to the Calibration of Computer Models (2310.09214v1)

Published 13 Oct 2023 in stat.ME and stat.CO

Abstract: In the context of computer models, calibration is the process of estimating unknown simulator parameters from observational data. Calibration is variously referred to as model fitting, parameter estimation/inference, an inverse problem, and model tuning. The need for calibration occurs in most areas of science and engineering, and has been used to estimate hard to measure parameters in climate, cardiology, drug therapy response, hydrology, and many other disciplines. Although the statistical method used for calibration can vary substantially, the underlying approach is essentially the same and can be considered abstractly. In this survey, we review the decisions that need to be taken when calibrating a model, and discuss a range of computational methods that can be used to compute Bayesian posterior distributions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.