Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Generative Intrinsic Optimization: Intrinsic Control with Model Learning (2310.08100v2)

Published 12 Oct 2023 in cs.LG

Abstract: Future sequence represents the outcome after executing the action into the environment (i.e. the trajectory onwards). When driven by the information-theoretic concept of mutual information, it seeks maximally informative consequences. Explicit outcomes may vary across state, return, or trajectory serving different purposes such as credit assignment or imitation learning. However, the inherent nature of incorporating intrinsic motivation with reward maximization is often neglected. In this work, we propose a policy iteration scheme that seamlessly incorporates the mutual information, ensuring convergence to the optimal policy. Concurrently, a variational approach is introduced, which jointly learns the necessary quantity for estimating the mutual information and the dynamics model, providing a general framework for incorporating different forms of outcomes of interest. While we mainly focus on theoretical analysis, our approach opens the possibilities of leveraging intrinsic control with model learning to enhance sample efficiency and incorporate uncertainty of the environment into decision-making.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)