Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical planning-scheduling-control -- Optimality surrogates and derivative-free optimization (2310.07870v1)

Published 11 Oct 2023 in math.OC and cs.CE

Abstract: Planning, scheduling, and control typically constitute separate decision-making units within chemical companies. Traditionally, their integration is modelled sequentially, but recent efforts prioritize lower-level feasibility and optimality, leading to large-scale, potentially multi-level, hierarchical formulations. Data-driven techniques, like optimality surrogates or derivative-free optimization, become essential in addressing ensuing tractability challenges. We demonstrate a step-by-step workflow to find a tractable solution to a tri-level formulation of a multi-site, multi-product planning-scheduling-control case study. We discuss solution tractability-accuracy trade-offs and scaling properties for both methods. Despite individual improvements over conventional heuristics, both approaches present drawbacks. Consequently, we synthesize our findings into a methodology combining their strengths. Our approach remains agnostic to the level-specific formulations when the linking variables are identified and retains the heuristic sequential solution as fallback option. We advance the field by leveraging parallelization, hyperparameter tuning, and a combination of off- and on-line computation, to find tractable solutions to more accurate multi-level formulations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (82)
  1. A preface to the special issue on enterprise-wide optimization. 2019. URL: https://doi.org/10.1007/s11081-019-09468-9. doi:10.1007/s11081-019-09468-9.
  2. Grossmann, I.. Enterprise-wide optimization: A new frontier in process systems engineering. AIChE Journal 2005;51(7):1846–1857. URL: http://doi.wiley.com/10.1002/aic.10617. doi:10.1002/aic.10617.
  3. Grossmann, I.E.. Advances in mathematical programming models for enterprise-wide optimization. Computers & Chemical Engineering 2012;47:2–18. URL: https://www.sciencedirect.com/science/article/abs/pii/S0098135412002220. doi:10.1016/J.COMPCHEMENG.2012.06.038.
  4. Model-based integration of control and operations: Overview, challenges, advances, and opportunities. Computers & Chemical Engineering 2015a;83:2–20. URL: https://www.sciencedirect.com/science/article/pii/S009813541500112X. doi:https://doi.org/10.1016/j.compchemeng.2015.04.011; 24th European Symposium on Computer Aided Process Engineering(ESCAPE).
  5. A survey on mixed-integer programming techniques in bilevel optimization. EURO Journal on Computational Optimization 2021;9:100007. URL: https://www.sciencedirect.com/science/article/pii/S2192440621001349. doi:https://doi.org/10.1016/j.ejco.2021.100007.
  6. Integration of planning, scheduling, and control: A review and new perspectives. The Canadian Journal of Chemical Engineering 2022;100(9):2057–2070. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cjce.24501. doi:https://doi.org/10.1002/cjce.24501. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cjce.24501.
  7. Optimal demand response scheduling of an industrial air separation unit using data-driven dynamic models. Computers & Chemical Engineering 2019;126:22--34. URL: https://www.sciencedirect.com/science/article/pii/S0098135418313371. doi:https://doi.org/10.1016/j.compchemeng.2019.03.022.
  8. 110th anniversary: Using data to bridge the time and length scales of process systems. Industrial & Engineering Chemistry Research 2019;58(36):16696--16708. URL: https://doi.org/10.1021/acs.iecr.9b02282. doi:10.1021/acs.iecr.9b02282. arXiv:https://doi.org/10.1021/acs.iecr.9b02282.
  9. Integrated planning, scheduling, and dynamic optimization for batch processes: Minlp model formulation and efficient solution methods via surrogate modeling. Industrial & Engineering Chemistry Research 2014a;53(34):13391--13411. URL: https://doi.org/10.1021/ie501986d. doi:10.1021/ie501986d. arXiv:https://doi.org/10.1021/ie501986d.
  10. A tutorial on decomposition methods for network utility maximization. IEEE Journal on Selected Areas in Communications 2006;24(8):1439--1451. doi:10.1109/JSAC.2006.879350.
  11. A lagrangean decomposition optimization approach for long-term planning, scheduling and control. Computers & Chemical Engineering 2020;135:106713. URL: https://www.sciencedirect.com/science/article/pii/S0098135419307021. doi:https://doi.org/10.1016/j.compchemeng.2019.106713.
  12. An milp framework for optimizing demand response operation of air separation units. Applied Energy 2018;222:951--966. URL: https://www.sciencedirect.com/science/article/pii/S0306261917318524. doi:https://doi.org/10.1016/j.apenergy.2017.12.127.
  13. Integration of scheduling and control for batch process based on generalized benders decomposition approach with genetic algorithm. Computers & Chemical Engineering 2021;145:107166. URL: https://www.sciencedirect.com/science/article/pii/S0098135420303306. doi:https://doi.org/10.1016/j.compchemeng.2020.107166.
  14. Machine learning in chemical engineering: A perspective. Chemie Ingenieur Technik 2021;93(12):2029--2039. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.202100083. doi:https://doi.org/10.1002/cite.202100083. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cite.202100083.
  15. Machine learning for biochemical engineering: A review. Biochemical Engineering Journal 2021;172:108054. URL: https://www.sciencedirect.com/science/article/pii/S1369703X21001303. doi:https://doi.org/10.1016/j.bej.2021.108054.
  16. Review of Metamodeling Techniques in Support of Engineering Design Optimization. Journal of Mechanical Design 2006;129(4):370--380. URL: https://doi.org/10.1115/1.2429697. doi:10.1115/1.2429697. arXiv:https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/129/4/370/5922708/370_1.pdf.
  17. A time scale-bridging approach for integrating production scheduling and process control. Computers & Chemical Engineering 2015;79:59--69. URL: https://www.sciencedirect.com/science/article/pii/S0098135415001271. doi:https://doi.org/10.1016/j.compchemeng.2015.04.026.
  18. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Computers & Chemical Engineering 2018;108:250--267. URL: https://www.sciencedirect.com/science/article/pii/S0098135417303228. doi:https://doi.org/10.1016/j.compchemeng.2017.09.017.
  19. A bi-level formulation and solution method for the integration of process design and scheduling. In: Muñoz, S.G., Laird, C.D., Realff, M.J., eds. Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design; vol. 47 of Computer Aided Chemical Engineering. Elsevier; 2019:17--22. URL: https://www.sciencedirect.com/science/article/pii/B9780128185971500035. doi:https://doi.org/10.1016/B978-0-12-818597-1.50003-5.
  20. Amos, B.. Tutorial on amortized optimization for learning to optimize over continuous domains. ArXiv 2022;abs/2202.00665.
  21. Integrating process design and control using reinforcement learning. Chemical Engineering Research and Design 2021;183. doi:10.1016/j.cherd.2021.10.032.
  22. Derivative-free optimization methods. Acta Numerica 2019;doi:10.1017/S0962492919000060.
  23. Simulation optimization: a review of algorithms and applications. Annals of Operations Research 2016;240(1):351--380. URL: https://link.springer.com/article/10.1007/s10479-015-2019-x. doi:10.1007/s10479-015-2019-x.
  24. Data-driven optimization for process systems engineering applications. Chemical Engineering Science 2022;248:117135. doi:10.1016/J.CES.2021.117135.
  25. Data-driven coordination of subproblems in enterprise-wide optimization under organizational considerations. AIChE Journal 2023;69(4):e17977. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.17977. doi:https://doi.org/10.1002/aic.17977. arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.17977.
  26. Flexibility index of black-box models with parameter uncertainty through derivative-free optimization. AIChE Journal 2021;doi:10.1002/aic.17189.
  27. Data-driven optimization of mixed-integer bi-level multi-follower integrated planning and scheduling problems under demand uncertainty. Computers & Chemical Engineering 2022;156:107551. URL: https://www.sciencedirect.com/science/article/pii/S009813542100329X. doi:https://doi.org/10.1016/j.compchemeng.2021.107551.
  28. Integrating operations and control: A perspective and roadmap for future research. Computers & Chemical Engineering 2018;115:179--184. URL: https://www.sciencedirect.com/science/article/pii/S0098135418303132. doi:https://doi.org/10.1016/j.compchemeng.2018.04.011.
  29. Integration of scheduling and control under uncertainties: Review and challenges. Chemical Engineering Research and Design 2016;116:98--113. URL: https://www.sciencedirect.com/science/article/pii/S0263876216304130. doi:https://doi.org/10.1016/j.cherd.2016.10.047; process Systems Engineering - A Celebration in Professor Roger Sargent’s 90th Year.
  30. Integrated planning, scheduling, and dynamic optimization for sequential batch processes. In: 2015 American Control Conference (ACC). 2015b:5635--5640. doi:10.1109/ACC.2015.7172222.
  31. Integrated production scheduling and process control: A systematic review. Computers & Chemical Engineering 2014;71:377--390. URL: https://www.sciencedirect.com/science/article/pii/S0098135414002543. doi:https://doi.org/10.1016/j.compchemeng.2014.09.002.
  32. The integration of scheduling and control: Top-down vs. bottom-up. Journal of Process Control 2020;91:50--62. URL: https://www.sciencedirect.com/science/article/pii/S0959152420302158. doi:https://doi.org/10.1016/j.jprocont.2020.05.008.
  33. Demand-side management and optimal operation of industrial electricity consumers: An example of an energy-intensive chemical plant. Applied Energy 2016;182:418--433. URL: https://www.sciencedirect.com/science/article/pii/S0306261916311710. doi:https://doi.org/10.1016/j.apenergy.2016.08.084.
  34. Integrating tactical planning, operational planning and scheduling using data-driven feasibility analysis. Computers & Chemical Engineering 2022;161:107759. URL: https://www.sciencedirect.com/science/article/pii/S0098135422001004. doi:https://doi.org/10.1016/j.compchemeng.2022.107759.
  35. A data-driven linear formulation of the optimal demand response scheduling problem for an industrial air separation unit. Chemical Engineering Science 2022;252:117468. URL: https://www.sciencedirect.com/science/article/pii/S0009250922000525. doi:https://doi.org/10.1016/j.ces.2022.117468.
  36. Data-driven models and algorithms for demand response scheduling of air separation units. In: Eden, M.R., Ierapetritou, M.G., Towler, G.P., eds. 13th International Symposium on Process Systems Engineering (PSE 2018); vol. 44 of Computer Aided Chemical Engineering. Elsevier; 2018:1273--1278. URL: https://www.sciencedirect.com/science/article/pii/B978044464241750207X. doi:https://doi.org/10.1016/B978-0-444-64241-7.50207-X.
  37. Identification and online updating of dynamic models for demand response of an industrial air separation unit. IFAC-PapersOnLine 2021a;54(3):140--145. URL: https://www.sciencedirect.com/science/article/pii/S240589632101003X. doi:https://doi.org/10.1016/j.ifacol.2021.08.232; 16th IFAC Symposium on Advanced Control of Chemical Processes ADCHEM 2021.
  38. Stochastic data-driven model predictive control using gaussian processes. Computers & Chemical Engineering 2020;139:106844. URL: https://www.sciencedirect.com/science/article/pii/S0098135419313080. doi:https://doi.org/10.1016/j.compchemeng.2020.106844.
  39. Bringing new technologies and approaches to the operation and control of chemical process systems. AIChE Journal 2019;65(6):e16615. URL: https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.16615. doi:https://doi.org/10.1002/aic.16615. arXiv:https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.16615.
  40. Decomposition of integrated scheduling and dynamic optimization problems using community detection. Journal of Process Control 2020;90:63--74. URL: https://www.sciencedirect.com/science/article/pii/S0959152420302006. doi:https://doi.org/10.1016/j.jprocont.2020.04.003.
  41. A multicut generalized benders decomposition approach for the integration of process operations and dynamic optimization for continuous systems. Computers & Chemical Engineering 2022;164:107859. URL: https://www.sciencedirect.com/science/article/pii/S0098135422001971. doi:https://doi.org/10.1016/j.compchemeng.2022.107859.
  42. Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation. Technometrics 1962;4(4):441--461. URL: http://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490033. doi:10.1080/00401706.1962.10490033.
  43. Algorithm 1027: Nomad version 4: Nonlinear optimization with the mads algorithm. ACM Trans Math Softw 2022;48(3). URL: https://doi.org/10.1145/3544489. doi:10.1145/3544489.
  44. The direct algorithm--25 years later. Journal of Global Optimization 2021;doi:10.1007/s10898-020-00952-6.
  45. Evolutionary algorithms and their applications to engineering problems. Neural Computing and Applications 2020;32(16):12363--12379. URL: https://doi.org/10.1007/s00521-020-04832-8. doi:10.1007/s00521-020-04832-8.
  46. Powell, M.J.D.. A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation. Dordrecht: Springer Netherlands. ISBN 978-94-015-8330-5; 1994:51--67. URL: https://doi.org/10.1007/978-94-015-8330-5_4. doi:10.1007/978-94-015-8330-5_4.
  47. Powell, M.. The bobyqa algorithm for bound constrained optimization without derivatives. Technical Report, Department of Applied Mathematics and Theoretical Physics 2009;.
  48. Frazier, P.. A tutorial on bayesian optimization. ArXiv 2018;abs/1807.02811.
  49. Entmoot: A framework for optimization over ensemble tree models. Computers & Chemical Engineering 2021;151:107343. URL: https://www.sciencedirect.com/science/article/pii/S0098135421001216. doi:https://doi.org/10.1016/j.compchemeng.2021.107343.
  50. A genetic programming-based iterative approach for the integrated process planning and scheduling problem. IEEE Transactions on Automation Science and Engineering 2022;19(3):2566--2580. doi:10.1109/TASE.2021.3091610.
  51. A modified genetic algorithm with new encoding and decoding methods for integrated process planning and scheduling problem. IEEE Transactions on Cybernetics 2021;51(9):4429--4438. doi:10.1109/TCYB.2020.3026651.
  52. Simulation based optimization of supply chains with a surrogate model. In: Barbosa-Póvoa, A., Matos, H., eds. European Symposium on Computer-Aided Process Engineering-14; vol. 18 of Computer Aided Chemical Engineering. Elsevier; 2004:1009--1014. URL: https://www.sciencedirect.com/science/article/pii/S1570794604802347. doi:https://doi.org/10.1016/S1570-7946(04)80234-7.
  53. Game theoretic optimisation in process and energy systems engineering: A review. Frontiers in Chemical Engineering 2023;5. URL: https://www.frontiersin.org/articles/10.3389/fceng.2023.1130568. doi:10.3389/fceng.2023.1130568.
  54. Minlp formulation for simultaneous planning, scheduling, and control of short-period single-unit processing systems. Industrial & Engineering Chemistry Research 2014;53(38):14679--14694. URL: https://doi.org/10.1021/ie402563j. doi:10.1021/ie402563j. arXiv:https://doi.org/10.1021/ie402563j.
  55. An overview of bilevel optimization. Annals of Operations Research 2007;153:235--256.
  56. A simulation-based optimization framework for integrating scheduling and model predictive control, and its application to air separation units. Computers & Chemical Engineering 2018;113:139--151. URL: https://www.sciencedirect.com/science/article/pii/S0098135418301716. doi:https://doi.org/10.1016/j.compchemeng.2018.03.009.
  57. Why there is no need to use a big-m in linear bilevel optimization: A computational study of two ready-to-use approaches. Computational Management Science 2023;20(1). doi:10.1007/s10287-023-00435-5.
  58. Production scheduling and linear mpc: Complete integration via complementarity conditions. Computers & Chemical Engineering 2019;125:287--305. URL: https://www.sciencedirect.com/science/article/pii/S0098135418310974. doi:https://doi.org/10.1016/j.compchemeng.2019.01.024.
  59. Stackelberg-game-based modeling and optimization for supply chain design and operations: A mixed integer bilevel programming framework. Computers & Chemical Engineering 2017;102:81--95. URL: https://www.sciencedirect.com/science/article/pii/S0098135416302460. doi:https://doi.org/10.1016/j.compchemeng.2016.07.026; sustainability & Energy Systems.
  60. Using neural networks to solve linear bilevel problems with unknown lower level. Optimization Letters 2023;doi:10.1007/s11590-022-01958-7.
  61. Integrated scheduling and dynamic optimization by stackelberg game: Bilevel model formulation and efficient solution algorithm. Industrial & Engineering Chemistry Research 2014b;53(13):5564--5581. URL: https://doi.org/10.1021/ie404272t. doi:10.1021/ie404272t. arXiv:https://doi.org/10.1021/ie404272t.
  62. Multi-level Mixed-Integer Optimization: Parametric Programming Approach. Berlin, Boston: De Gruyter; 2022. ISBN 9783110760316. URL: https://doi.org/10.1515/9783110760316. doi:doi:10.1515/9783110760316.
  63. Integrated process design, scheduling, and control using multiparametric programming. Computers & Chemical Engineering 2019;125:164--184. URL: https://www.sciencedirect.com/science/article/pii/S0098135418312857. doi:https://doi.org/10.1016/j.compchemeng.2019.03.004.
  64. Towards the integration of process design, control and scheduling: Are we getting closer? Computers & Chemical Engineering 2016;91:85--92. URL: https://www.sciencedirect.com/science/article/pii/S0098135415003609. doi:https://doi.org/10.1016/j.compchemeng.2015.11.002; 12th International Symposium on Process Systems Engineering & 25th European Symposium of Computer Aided Process Engineering (PSE-2015/ESCAPE-25), 31 May - 4 June 2015, Copenhagen, Denmark.
  65. Partition-based formulations for mixed-integer optimization of trained relu neural networks. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W., eds. Advances in Neural Information Processing Systems; vol. 34. Curran Associates, Inc.; 2021b:3068--3080. URL: https://proceedings.neurips.cc/paper/2021/file/17f98ddf040204eda0af36a108cbdea4-Paper.pdf.
  66. Omlt: Optimization & machine learning toolkit. Journal of Machine Learning Research 2022a;23(349):1--8.
  67. Presentation abstract: Optimization formulations for machine learning surrogates. In: Yamashita, Y., Kano, M., eds. 14th International Symposium on Process Systems Engineering; vol. 49 of Computer Aided Chemical Engineering. Elsevier; 2022b:57--58. URL: https://www.sciencedirect.com/science/article/pii/B9780323851596500087. doi:https://doi.org/10.1016/B978-0-323-85159-6.50008-7.
  68. Deterministic global process optimization: Flash calculations via artificial neural networks. In: Kiss, A.A., Zondervan, E., Lakerveld, R., Özkan, L., eds. 29th European Symposium on Computer Aided Process Engineering; vol. 46 of Computer Aided Chemical Engineering. Elsevier; 2019:937--942. URL: https://www.sciencedirect.com/science/article/pii/B9780128186343501570. doi:https://doi.org/10.1016/B978-0-12-818634-3.50157-0.
  69. Safe deployment of reinforcement learning using deterministic optimization over neural networks. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E., eds. 33rd European Symposium on Computer Aided Process Engineering; vol. 52 of Computer Aided Chemical Engineering. Elsevier; 2023:1643--1648. URL: https://www.sciencedirect.com/science/article/pii/B9780443152740502614. doi:https://doi.org/10.1016/B978-0-443-15274-0.50261-4.
  70. Tractable data-driven solutions to hierarchical planning-scheduling-control. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E., eds. 33rd European Symposium on Computer Aided Process Engineering; vol. 52 of Computer Aided Chemical Engineering. Elsevier; 2023:649--654. URL: https://www.sciencedirect.com/science/article/pii/B9780443152740501037. doi:https://doi.org/10.1016/B978-0-443-15274-0.50103-7.
  71. New general continuous-time state−task network formulation for short-term scheduling of multipurpose batch plants. Industrial & Engineering Chemistry Research 2003;42(13):3056--3074. URL: https://doi.org/10.1021/ie020923y. doi:10.1021/ie020923y. arXiv:https://doi.org/10.1021/ie020923y.
  72. Short-term scheduling of batch processes. a comparative study of different approaches. Industrial & Engineering Chemistry Research 2005;44(11):4022--4034. URL: https://doi.org/10.1021/ie049662d. doi:10.1021/ie049662d. arXiv:https://doi.org/10.1021/ie049662d.
  73. Model predictive control: theory, computation, and design; vol. 2. Nob Hill Publishing Madison, WI; 2017.
  74. Paroc—an integrated framework and software platform for the optimisation and advanced model-based control of process systems. Chemical Engineering Science 2015;136:115--138. URL: https://www.sciencedirect.com/science/article/pii/S0009250915001451. doi:https://doi.org/10.1016/j.ces.2015.02.030; control and Optimization of Smart Plant Operations.
  75. When deep learning meets polyhedral theory: A survey. 2023. arXiv:2305.00241.
  76. Pyomo: modeling and solving mathematical programs in python. Mathematical Programming Computation 2011;3(3):219--260. URL: https://doi.org/10.1007/s12532-011-0026-8. doi:10.1007/s12532-011-0026-8.
  77. Improving the flexibility and robustness of model-based derivative-free optimization solvers. ACM Trans Math Softw 2019;45(3). URL: https://doi.org/10.1145/3338517. doi:10.1145/3338517.
  78. Openbox: A generalized black-box optimization service. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. KDD ’21; New York, NY, USA: Association for Computing Machinery. ISBN 9781450383325; 2021:3209–3219. URL: https://doi.org/10.1145/3447548.3467061. doi:10.1145/3447548.3467061.
  79. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 2006;106:25--57.
  80. Gurobi Optimizer Reference Manual. 2023. URL: https://www.gurobi.com.
  81. Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32. Curran Associates, Inc.; 2019:8024--8035. URL: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
  82. Omlt: Optimization & machine learning toolkit. J Mach Learn Res 2022c;23(1).
Citations (1)

Summary

We haven't generated a summary for this paper yet.