Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling triangulations of manifolds using Monte Carlo methods (2310.07372v1)

Published 11 Oct 2023 in math.CO, cond-mat.stat-mech, cs.CG, math.GT, and physics.comp-ph

Abstract: We propose a Monte Carlo method to efficiently find, count, and sample abstract triangulations of a given manifold M. The method is based on a biased random walk through all possible triangulations of M (in the Pachner graph), constructed by combining (bi-stellar) moves with suitable chosen accept/reject probabilities (Metropolis-Hastings). Asymptotically, the method guarantees that samples of triangulations are drawn at random from a chosen probability. This enables us not only to sample (rare) triangulations of particular interest but also to estimate the (extremely small) probability of obtaining them when isomorphism types of triangulations are sampled uniformly at random. We implement our general method for surface triangulations and 1-vertex triangulations of 3-manifolds. To showcase its usefulness, we present a number of experiments: (a) we recover asymptotic growth rates for the number of isomorphism types of simplicial triangulations of the 2-dimensional sphere; (b) we experimentally observe that the growth rate for the number of isomorphism types of 1-vertex triangulations of the 3-dimensional sphere appears to be singly exponential in the number of their tetrahedra; and (c) we present experimental evidence that a randomly chosen isomorphism type of 1-vertex n-tetrahedra 3-sphere triangulation, for n tending to infinity, almost surely shows a fixed edge-degree distribution which decays exponentially for large degrees, but shows non-monotonic behaviour for small degrees.

Summary

We haven't generated a summary for this paper yet.