Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simplification paths in the Pachner graphs of closed orientable 3-manifold triangulations (1110.6080v1)

Published 27 Oct 2011 in math.GT and cs.CG

Abstract: It is important to have effective methods for simplifying 3-manifold triangulations without losing any topological information. In theory this is difficult: we might need to make a triangulation super-exponentially more complex before we can make it smaller than its original size. Here we present experimental work that suggests the reality is far different: for an exhaustive census of 81,800,394 one-vertex triangulations that span 1,901 distinct closed orientable 3-manifolds, we never need to add more than two extra tetrahedra, we never need more than a handful of Pachner moves (or bistellar flips), and the average number of Pachner moves decreases as the number of tetrahedra grows. If they generalise, these extremely surprising results would have significant implications for decision algorithms and the study of triangulations in 3-manifold topology. Key techniques include polynomial-time computable signatures that identify triangulations up to isomorphism, the isomorph-free generation of non-minimal triangulations, theoretical operations to reduce sequences of Pachner moves, and parallel algorithms for studying finite level sets in the infinite Pachner graph.

Citations (16)

Summary

We haven't generated a summary for this paper yet.